IMPLEMENTATION OF BLOCKCHAIN IN PROPERTY SALES TRANSACTIONS

ISSN: 2527-9866

PENERAPAN BLOCKCHAIN DALAM TRANSAKSI PENJUALAN PROPERTI

Auxylium Brtion Edyn Bunga¹, Erik Iman Heri Ujianto²

Universitas Teknologi Yogyakarta, Mlati, Sleman, Yogyakarta auxylium.5220411260@student.uty.ac.id¹, erik.iman@uty.ac.id²

Abstract - In the digital era, property sales face significant challenges such as lengthy processes, involvement of multiple intermediaries, and lack of ownership transparency. This study aims to create a prototype property transaction system that utilizes blockchain technology, integrated with smart contracts, a Node.js backend, and a MySQL database. The system is simulated with Ganache as a local network to test the decentralized and secure data storage of transactions. The research methods include simulation, direct observation, as well as functional testing and performance evaluation using a black box testing approach to ensure the reliability and efficiency of each system component. Test results show a functional success rate of 100% from 14 test scenarios. Based on these findings, the system has been proven to validly record transactions, avoid double transactions, and maintain data integrity. Smart contract technology can partly replace notary functions digitally, while blockchain serves as a means of secure and immutable transaction storage. Therefore, this system can enhance efficiency, transparency, and accountability in property transaction processes and make a significant contribution to the digitalization of the real estate sector.

Keywords - Blockchain, Smart Contract, Property Transactions, Data Security, Property Digitalization.

Abstrak - Di era digital, penjualan properti mengalami tantangan signifikan seperti proses yang panjang, keterlibatan sejumlah perantara, dan kurangnya transparansi kepemilikan. Studi ini bertujuan menciptakan prototipe system transaksi properti yang memanfaatkan teknologi blockchain, terintegrasi dengan smart contract, backend Node.js, dan basis data MySQL. Sistem ini disimulasikan dengan Ganache sebagai jaringan lokal untuk menguji penyimpanan data transaksi yang terdesentralisasi dan aman. Metode penelitian dilakukan dengan cara simulasi, observasi langsung, serta uji fungsional dan evaluasi performa sistem menggunakan pendekatan black box testing untuk menjamin keandalan dan efisiensi tiap komponen sistem. Hasil uji menunjukkan tingkat keberhasilan fungsional 100% dari 14 skenario tes. Berdasarkan temuan itu, sistem terbukti dapat merekam transaksi dengan valid, menghindari terjadinya transaksi ganda, dan mempertahankan integritas data. Teknologi kontrak pintar mampu menggantikan sebagian fungsi notaris secara digital, sedangkan blockchain berperan sebagai sarana penyimpanan transaksi yang aman dan tidak bisa diubah. Oleh karena itu, sistem ini dapat meningkatkan efisiensi, transparansi, dan akuntabilitas dalam proses transaksi properti serta memberikan sumbangan signifikan terhadap digitalisasi sektor real estate.

Kata Kunci - Blockchain, Smart Contract, Transaksi Properti, Keamanan Data, Digitalisasi Properti.

I. PENDAHULUAN

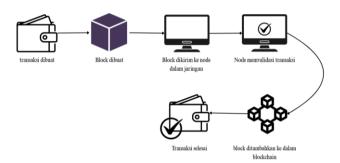
ISSN: 2527-9866

Di era digital yang terus berkembang, kebutuhan akan sistem transaksi yang aman, efisien, dan transparan semakin penting, terutama dalam industri properti yang melibatkan aset bernilai tinggi[1]. Transaksi properti konvensional masih menghadapi berbagai kendala seperti proses yang panjang, keterlibatan banyak perantara, potensi manipulasi dokumen, serta kurangnya transparansi kepemilikan[2]. Berdasarkan Laporan Survei Harga Properti Residensial (SHPR) Bank Indonesia Triwulan I 2025, pertumbuhan indeks harga properti residensial tercatat sebesar 1,07% (yoy), melambat dari 1,39% (yoy) pada triwulan sebelumnya, yang menunjukkan perlambatan aktivitas pasar properti nasional, terutama di segmen rumah menengah dan kecil akibat kenaikan suku bunga serta tekanan ekonomi global [3]. Meskipun demikian, penjualan rumah masih meningkat sebesar 2,3% (qtq), menandakan adanya potensi pemulihan bertahap di sektor properti. Dalam konteks ini, teknologi blockchain menawarkan solusi inovatif dengan menciptakan sistem pencatatan transaksi yang permanen, transparan, dan terdesentralisasi melalui mekanisme distributed ledger yang tidak dapat diubah [4]. Konsep blockchain yang terdesentralisasi, transparan, dan tahan tamper telah menarik minat yang besar, terutama dalam konteks sistem pembayaran[5]. Teknologi ini telah terbukti bermanfaat di berbagai sektor seperti e-commerce, perbankan, rantai pasokan, dan sistem informasi medis[1]. Dalam konteks properti, blockchain mampu memastikan keabsahan kepemilikan, mempercepat proses jual beli, serta melindungi data pengguna dari manipulasi dan kehilangan. Melalui penggunaan smart contract, transaksi dapat dilakukan secara otomatis ketika syarat-syarat tertentu terpenuhi[4]. Namun, penerapan blockchain dalam transaksi properti masih terbatas, dan smart contract belum sepenuhnya menggantikan peran notaris yang masih diperlukan untuk menilai keabsahan kontrak serta memberikan perlindungan hukum [6]. Selain itu, blockchain meningkatkan keamanan data dan kepercayaan pengguna karena seluruh informasi transaksi dienkripsi dan hanya dapat diakses oleh pihak yang memiliki kunci otentikasi, yang sangat penting untuk menjaga kerahasiaan detail kepemilikan, identitas pengguna, dan data kontrak [7]. Penelitian ini bertujuan untuk mengembangkan dan mengevaluasi penerapan blockchain dalam transaksi properti guna meningkatkan transparansi, efisiensi, keamanan data, dan mengurangi peran perantara. Dengan demikian, penelitian ini diharapkan dapat mendukung digitalisasi sektor properti serta menciptakan ekosistem transaksi yang lebih modern, aman, dan terpercaya.

II. SIGNIFIKANSI STUDI

A. Studi Literatur

Berdasarkan temuan dari berbagai jurnal sebelumnya, setiap studi memiliki fokus dan sumbangan yang berbeda terhadap pengembangan teknologi blockchain, terutama dalam meningkatkan keamanan, transparansi, dan efisiensi transaksi digital. Penelitian [8] menekankan pemanfaatan blockchain dan smart contract untuk transaksi properti di kota pintar dengan integrasi IoT, sementara penelitian ini berfokus pada pembuatan sistem web transaksi properti yang dapat diakses langsung oleh masyarakat melalui integrasi backend Node.js, MySQL, dan smart contract Ethereum. Ethereum dipilih karena mendukung kontrak pintar yang terdesentralisasi, aman, dan dapat mengelola transaksi properti secara transparan tanpa perantara. Selain itu, Ethereum menawarkan jaringan pengujian seperti Ganache yang memungkinkan pengujian sistem tanpa perlu menggunakan gas nyata, sehingga memudahkan simulasi sebelum diterapkan di mainnet. Node.js dipilih karena kemampuannya dalam memproses data transaksi blockchain secara langsung dengan performa tinggi dan mudah dipadukan dengan Web3.js untuk menghubungkan sistem web ke jaringan Ethereum. Penelitian [4] mengkaji keamanan data e-commerce menggunakan penyimpanan BigchainDB, sementara penelitian ini mengembangkan ide itu dengan melindungi data transaksi properti melalui sistem on-chain dan off-chain yang terintegrasi. Penelitian [1] memanfaatkan Hyperledger Fabric sebagai blockchain privat untuk meningkatkan efisiensi dan jejak audit kepemilikan, sementara penelitian ini menggunakan blockchain publik Ethereum untuk memberikan akses yang lebih terbuka kepada masyarakat. Penelitian [9] yang menganalisis algoritma konsensus seperti PoW, PoS, dan Zero-Knowledge Proof juga mendasari pemilihan Ethereum sebagai platform yang aman dan stabil untuk transaksi secara langsung. Secara keseluruhan, penelitian ini melengkapi kajian yang ada sebelumnya dengan menyajikan prototipe nyata berbasis web yang menggabungkan blockchain, smart contract, Node.js, dan MySQL, sehingga memberikan kontribusi praktis berupa sistem transaksi properti digital yang transparan, aman, dan siap diterapkan dalam konteks nyata di Indonesia.


ISSN: 2527-9866

- 1. *Blockchain* adalah teknologi buku besar terdistribusi yang mendukung interaksi peer-to-peer dengan menyimpan data dalam jaringan yang tidak tersentralisasi, menciptakan rantai catatan yang diamankan secara kriptografis dan tidak dapat diubah, sehingga menyediakan jalur audit penuh untuk data dan memastikan keterlacakan dalam aktivitas CSC [1]. Penggunaan blockchain dalam real estate memberikan banyak keuntungan yang sebelumnya membutuhkan sistem komputer yang besar dan kompleks, selain intervensi dari banyak agen kontrol eksternal. [8]. Dapat dikatakan bahwa blockchain merupakan solusi yang sangat menjanjikan untuk berbagai masalah seperti single point of failure atau manipulasi data yang tersimpan, dan dalam beberapa kasus dapat mencegah serangan distributed denial of service (DDoS)[10]. Penelitian ini fokus pada penggunaan sistem blockchain publik Ethereum untuk mengelola data transaksi properti onchain dan off-chain. Metode ini menghasilkan arsitektur hybrid, yang memungkinkan penyimpanan data penting seperti bukti transaksi di blockchain untuk menjamin integritas dan ketidakberubahan, sedangkan data tambahan seperti informasi pengguna dan properti disimpan di MySQL untuk memastikan efisiensi sistem. Kombinasi ini membuat transparansi blockchain dan kinerja sistem basis data tradisional seimbang, yang jarang dibahas dalam penelitian sebelumnya.
- 2. Smart Contract adalah program digital yang dapat menyelesaikan perjanjian atau kesepakatan antara dua atau lebih pihak tanpa perlu keterlibatan pihak ketiga. Program ini berjalan secara otomatis di atas jaringan blockchain. Kontrak ini memiliki syarat dan ketentuan yang dikodekan secara eksplisit dalam bahasa pemrograman dan disimpan secara permanen di blockchain[11]. Smart contract memungkinkan Penerapan logika bisnis kompleks yang hanya akan berjalan apabila kondisi tertentu terpenuhi [12]. Smart contract digunakan secara berulang dengan logika yang serupa, sehingga diperlukan pola desain yang efisien untuk mengelola berbagai jenis transaksi yang berbeda namun saling berkaitan [13]. Salah satu aspek kontrak pintar adalah desain dan pelaksanaan kontrak pintar untuk transaksi jual beli properti di jaringan Ethereum, yang secara otomatis melakukan verifikasi, pencatatan, dan konfirmasi transaksi tanpa verifikasi manual. Penelitian ini juga memberikan pola desain kontrak modular yang memungkinkan logika bisnis digunakan ulang untuk berbagai jenis transaksi properti.
- 3. Website merupakan kumpulan dokumen HTML milik individu atau perusahaan yang berisi informasi dan terdapat di Web Server (komputer yang berfungsi menyimpan informasi dan mengelola jaringan komputer) serta dapat diakses oleh semua pengguna internet. Situs web juga dapat diartikan sebagai serangkaian halaman situs yang termuat dalam satu domain atau subdomain dan berada dalam World Wide Web (WWW). Situs web umumnya berisi informasi, baik berupa teks, gambar, suara, dan materi lainnya yang dapat diakses secara daring[14]. Web dapat berperan sebagai saluran komunikasi yang bersifat dinamis dan berfungsi sebagai sumber informasi yang lebih mengutamakan kualitas konten, karena tujuan halaman ini adalah menyampaikan isi tersebut[15] Sistem ini tidak hanya menampilkan informasi properti dari database MySQL, tetapi juga menampilkan hasil transaksi blockchain secara langsung. Dengan cara ini, situs web tidak hanya berfungsi sebagai sumber informasi, tetapi juga sebagai portal transaksi digital yang aman, transparan, dan interaktif.
- 4. Android adalah sistem operasi untuk handphone yang bersifat open source dan berbasis pada Linux. Android dapat dimanfaatkan oleh siapa saja yang ingin menggunakannya di perangkat mereka. Android menawarkan platform terbuka bagi pengembang untuk membuat aplikasi mereka sendiri yang akan digunakan pada berbagai perangkat mobile [9]. Android telah

menawarkan platform yang terbuka bagi pengembang untuk menciptakan aplikasi sesuai keinginan mereka. Ini sangat menguntungkan bagi pengembang untuk merancang aplikasi sesuai dengan keinginan mereka [16].

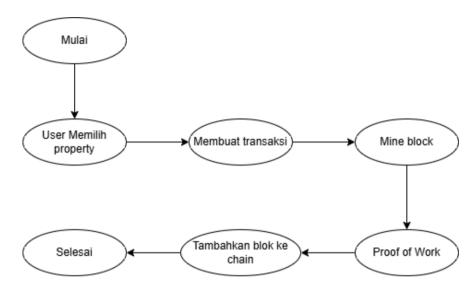
ISSN: 2527-9866

5. Arsitektur system blockchain untuk transaksi properti dimulai saat pengguna menghasilkan transaksi digital yang kemudian dipaketkan dalam sebuah block. Blook itu dikirim ke node dalam jaringan blockchain untuk validasi, dimana node-node akan memeriksa keabsahan transaksi berdasarkan konsensus yang telah disepakati. Setelah transaksi dianggap valid, blok resmi dimasukkan ke dalam rantai blockchain sebagai rekaman permanen dan tidak dapat diubah, dan pengguna menerima konfirmasi bahwa transaksi berhasil. Dengan mekanisme ini, setiap transaksi dicatat secara jelas, aman, dan tidak bisa diubah, karena setiap blok terhubung satu sama lain melalui hash kriptografi. Struktur ini menjaga keaslian dan kepercayaan data tanpa memerlukan perantara, sehingga sangat cocok untuk digunakan dalam sistem transaksi penjualan dan penyewaan properti yang berbasis web di blockchain Ethereum yang dapat di lihat di gambar 1.

Gambar 1. Arsitektur Sistem Blockchain

6. Sumber dan Teknik Pengumpulan Data, Pada penelitian ini, data dikelompokkan menjadi dua kategori utama, yakni data primer dan data sekunder, yang saling melengkapi untuk memberikan wawasan menyeluruh tentang penerapan teknologi blockchain dalam transaksi penjualan properti. Data primer diperoleh oleh peneliti secara langsung melalui simulasi transaksi digital dengan menggunakan data tiruan yang menyerupai kondisi sebenarnya. Simulasi ini dilakukan berulang kali dalam berbagai kondisi, baik dalam keadaan normal maupun abnormal, untuk mengujicoba kehandalan dan keamanan sistem. Dari simulasi yang dilakukan, peneliti dapat melihat cara kerja prototipe sistem, merekam transaksi, dan mengevaluasi kestabilan sistem dalam menghadapi beragam skenario pemakaian. Di sisi lain, data sekunder diperoleh secara tidak langsung melalui kajian literatur dari beragam sumber ilmiah seperti jurnal akademis, artikel riset, buku, dan prosiding konferensi yang berhubungan dengan blockchain, sistem informasi, dan transaksi digital. Data sekunder ini dimanfaatkan untuk memperkuat dasar teori, mendukung desain sistem, serta membantu peneliti memahami konsep teknis dan praktis terkait teknologi blockchain. Melalui penggabungan kedua tipe data ini, penelitian dapat menghasilkan analisis yang komprehensif dan sah dalam menelaah penerapan blockchain pada sistem transaksi properti berbasis web.

III. HASIL DAN PEMBAHASAN


A. Perancangan Konseptual

Perancangan konseptual dilaksanakan untuk menggambarkan proses kerja sistem dan hubungan antar elemen sebelum fase pelaksanaan. Desain ini berfungsi sebagai landasan untuk mengembangkan prototipe sistem transaksi penjualan properti yang berbasiskan blockchain, sehingga memberikan pemahaman yang jelas tentang logika proses dan interaksi antar aktor.

1. Flowchart

Digunakan untuk membantu proses analisis dan evaluasi , flowchart menunjukkan urutan prosedur program dalam grafik. Teknik analisis bergambar yang dikenal sebagai flowchart menawarkan penjelasan yang ringkas, jelas, dan logis tentang komponen sistem informasi. Selain itu, flowchart juga menunjukkan bagaimana dokumen dan proses bisnis berjalan dalam suatu organisasi[17]. Menampilkan langkah-langkah dengan cara yang teratur sangat penting untuk mempermudah pemahaman alur proses [18]. Flowchart digunakan untuk menjelaskan penerapan sistem blockchain dalam transaksi properti. Ini memastikan mencakup proses validasi setiap transaksi dan penyimpanannya secara aman dan terdesentralisasi melalui mekanisme mining dan algoritma Proof of Work sebelum dimasukkan ke dalam rantai blok.

ISSN: 2527-9866

Gambar 2. Flowchart Penerapan Blockchain

2. Entity Relationship Diagram (ERD)

Salah satu tahap dalam desain basis data adalah pembuatan model diagram hubungan antar entitas data. Tahap ini memungkinkan pengembangan perangkat lunak pada sistem basis data berdasarkan hasil rancangan model konseptual dan relasional. ERD mendukung proses pembuatan database dengan memperlihatkan bagaimana cara kerja database yang akan dibuat [19]. ERD menggambarkan data yang dihasilkan, disimpan, dan digunakan dalam sistem interaksi antar file. ERD terhubung melalui kunci relasi, yang berfungsi sebagai kunci utama untuk setiap berkas [20]. Dalam studi ini, ERD diterapkan untuk menggambarkan struktur data pada sistem transaksi properti berbasis blockchain yang terdiri dari empat entitas utama, yaitu Pengguna, Properti, Transaksi, dan Block. Entitas Pengguna menyimpan informasi tentang pengguna sistem, baik pembeli maupun penjual; Properti mengandung data properti seperti harga, deskripsi, dan status ketersediaan; Transaksi mendokumentasikan proses jual beli dan detail pembayaran; sedangkan Blok menyimpan catatan transaksi yang sudah diverifikasi di blockchain. Keempat entitas ini saling terhubung untuk menjamin setiap transaksi tercatat dengan aman, transparan, dan terdesentralisasi, sehingga menjaga integritas data dalam proses transaksi digital.

Gambar 3. ERD Penerapan Blockchain

B. Implementasi Sistem

1. Website untuk pengguna (user)

Hasil pelaksanaan menunjukkan bahwa sistem transaksi properti yang menggunakan blockchain Ethereum ini berhasil terintegrasi dengan backend Node.js serta database MySQL untuk menghasilkan proses transaksi yang aman, transparan, dan efisien. Sistem terdiri dari beberapa elemen utama yang terlihat melalui tampilan pengguna. Halaman masuk dan registrasi (gambar 4 dan 5) berfungsi sebagai lapisan autentikasi awal, menjamin hanya pengguna yang terverifikasi yang dapat mengakses sistem. Setelah login, pengguna bisa melihat daftar properti (gambar 6) yang ditampilkan secara dinamis dari database MySQL dengan fitur penyaringan untuk memudahkan pencarian berdasar kategori. Ketika pengguna memilih sebuah properti, sistem menunjukkan halaman rinci (gambar 7) yang berisi informasi menyeluruh dan tombol "Beli Properti" untuk memulai langkah transaksi. Proses pembayaran (gambar 8) memungkinkan pengguna untuk menghubungkan dompet digital Metamask, mengonfirmasi transaksi, dan mengeksekusi smart contract di jaringan Ethereum. Proses ini secara otomatis mendokumentasikan transaksi di blockchain (on-chain) dan menyimpan data terkait di MySOL (off-chain), yang merupakan kontribusi ilmiah utama dari penelitian berupa penerapan model integrasi hybrid blockchain-database relasional. Halaman laporan transaksi (gambar 9) menampilkan semua transaksi yang sudah dilakukan, termasuk nama pembeli, properti, jumlah ETH, dan tanggal transaksi. Fitur ini mendukung prinsip transparansi dan auditabilitas karena setiap transaksi dapat diperiksa melalui catatan blockchain. Secara keseluruhan, sistem ini berhasil mengintegrasikan antarmuka pengguna, server backend, dan smart contract Ethereum untuk menawarkan prototipe transaksi properti digital yang siap diuji dan diimplementasikan secara nyata di Indonesia.

Gambar 4. Halaman Login Gambar 5. Halaman Register

ISSN: 2527-9866

Gambar 6. Halaman List Property Gambar 7. Halaman detail Property

Gambar 8. Halaman Pembayaran Gambar 9. Halaman Riwayat Transaksi

2. Detail Transaksi Blockchain

Gambar 10 menunjukkan hasil eksekusi transaksi smart contract pada jaringan uji Ethereum (Ganache). Hasil ini menunjukkan bahwa pembelian properti berhasil dan properti tersebut dicatat secara permanen di blockchain. Transaksi dari alamat 0xc828e5b8b7E0063B3d59123AAafaf66b4600fD5 ke kontrak penjualan properti dengan parameter buyProperty(uint256) bernilai 5 ETH terbukti sah dengan penggunaan gas 62.563, batas gas 75.195, dan blok 165. Hasil ini menunjukkan bahwa integrasi antarmuka web, backend Node.js, dan kontrak pintar Ethereum berjalan dengan baik dan memastikan bahwa transaksi properti digital aman dan transparan.

Gambar 10. Tampilan Transaksi Pembelian Properti Berbasis Blockchain

1. Aplikasi Android untuk admin,

Langkah pertama terlihat pada Gambar 11 (Halaman Masuk Admin), di mana administrator wajib mengisi alamat email dan kata sandi untuk mendapatkan akses ke sistem. Bagi pengguna yang baru dan belum memiliki akun, terdapat tautan untuk mengakses Gambar 12 (Formulir Pendaftaran Admin Baru) yang mencakup kolom untuk mengisi data seperti nama lengkap, alamat email, kata sandi, serta pengulangan kata sandi sebelum akun bisa terdaftar secara resmi dalam sistem.

Sesudah proses autentikasi berhasil, pengguna akan diarahkan ke Gambar 13 (Dashboard Admin) yang menunjukkan ringkasan informasi penting, termasuk jumlah total properti (7) dan total transaksi (6). Di halaman ini, ada juga fitur untuk menambahkan data properti baru dan daftar transaksi terbaru yang disertai dengan status penyelesaiannya. Proses penambahan properti dilakukan melalui Gambar 14 (Formulir Tambah Properti), yang memungkinkan admin untuk memasukkan data seperti nama properti, kategori, harga (dalam IDR maupun ETH), lokasi, keterangan, serta mengunggah foto pendukung. Semua properti yang telah dimasukkan ditampilkan pada Gambar 15 (Halaman Daftar Properti) dalam format kartu informasi yang berisi rincian singkat seperti nama, alamat, dan harga properti. Jika perlu pembaruan informasi, Gambar 16 (Halaman Edit Properti) menawarkan antarmuka yang memuat data properti yang ada dan dapat diubah sesuai kebutuhan.

Dari sudut pandang pengguna umum, Gambar 17 (Halaman Detail Properti) menunjukkan informasi lengkap mengenai properti tertentu, mencakup harga dalam Rupiah dan Ethereum, spesifikasi fisik, serta lokasi yang dijelaskan secara rinci. Gambar 18 (Halaman Daftar Transaksi) terakhir berfungsi sebagai pusat pemantauan transaksi, menampilkan rekaman historis aktivitas secara rinci mencakup informasi pelanggan, tipe properti, total transaksi dalam ETH, serta hash transaksi yang tercantum di blockchain.

Gambar 11. Halaman Login

ISSN: 2527-9866

Gambar 12 Halaman Register

Gambar 13. Halaman Dashboard

Gambar 14. Halaman Tambah Property

Gambar 15. Halaman List Property

Gambar 16. Halaman Detail Property

Gambar 17. Halaman Edit Property

Gambar 18. Halaman Riwayat Transaksi

3. Pengujian Hasil

Pengujian sistem, yang merupakan proses untuk memastikan bahwa sistem telah dibangun sesuai dengan instruksi yang ada, dilakukan dengan menggunakan metode pengujian black box. Halaman pengujian sistem terdapat pada tabel 1.

ISSN: 2527-9866

Tabel 1. Tabel Pengujian Sistem

No.	Menu yang Diuji	Deskripsi Pengujian	Hasil yang Diharapkan	Hasil Pengujian
1.	Login	Jika data pengguna benar, pengguna dapat masuk dengan email dan password. Jika salah, muncul pesan error.	Sistem mengecek apakah data yang di masukkan bnenar atau salah jika salah akan memunculkan pesan.	Berhasil
2.	Register	menggunakan data mereka untuk membuat akun dan mengakses sistem jika mereka belum mendaftar sebelumnya.	Sistem dapat membuat dan menyimpan akun baru dari data yang di inputkan.	Berhasil
3.	Halaman Utama	Pengguna dapat memilih kategori properti yang ingin mereka beli, seperti rumah, apartemen, atau tanah.	Sistem memuculkan setiap properti yang ada dan memunculkan properti sesuai dengan kategori yang di pilih	Berhasil
4.	Halaman Detail Property	menampilkan detail properti yang dipilih pengguna. Jika pengguna tertarik dengan properti yang mereka sukai, detail properti tersebut akan ditampilkan.	Sistem dapat memunculkan detail dari properti yang di pilih oleh pengguna.	Berhasil
5.	Halaman Pembayaran	Halaman yang digunakan pengguna untuk mengisi data pribadi, melakukan pembayaran, dan terhubung ke smart contract; fungsinya mengambil data properti seperti judul, harga, dan status penjualan dari blockchain.	Saat menekan tombol pembayaran, smart contract diaktifkan oleh sistem untuk mencatat transaksi dan memberikan dana kepada penjual. Database akan menyimpan informasi pribadi pembeli.	Berhasil
6.	Halaman Riwayat	Menampilkan riwayat pengguna ketika membeli property.	Menampilkan riwayat transaksi pengguna yang di simpan di database.	Berhasil
7.	Halaman Login Admin	Jika data admin benar, pengguna dapat masuk dengan email dan password. Jika salah, muncul pesan error.	Sistem mengecek apakah data yang di masukkan bnenar atau salah jika salah akan memunculkan pesan.	Berhasil
8.	Halaman Register Admin	Menggunakan data mereka untuk membuat akun dan mengakses sistem jika mereka belum mendaftar sebelumnya.	Sistem dapat membuat dan menyimpan akun baru dari data yang di inputkan.	Berhasil
9.	Halaman Dashboard Admin	menunjukkan jumlah total properti yang sudah terdaftar dan jumlah total transaksi yang telah terjadi yang memungkinkan penambahan properti.	Memunculkan semua transaksi dan jumlah dari property yang ada.	
10.	Halaman Tambah Properti	Menampilkan data yang harus dimasukkan untuk menambah properti baru.	dapat menyimpan dan memasukkan properti baru ke dalam database dan blockchain.	Berhasil
11.	Halaman list properti.	Menampilkan property yang sudah ada.	Sistem memuculkan setiap properti yang ada	Berhasil
12.	Halaman Detail Properti	menampilkan detail properti yang dipilih admin. Jika admin memilih properti, detail properti tersebut akan ditampilkan.	Sistem dapat memunculkan detail dari properti yang di pilih oleh admin.	Berhasil
13.	Halaman Edit Properti	Menampilkan data data yang propertinya perlu diubah	Ada kemampuan untuk menyimpan dan mengubah data yang telah diubah.	Berhasil
14.	Halaman Riwayat Transaksi	Menampilkan riwayat pengguna ketika membeli property.	Menampilkan riwayat transaksi pengguna yang di simpan di database.	Berhasil

KESIMPULAN

ISSN: 2527-9866

Berdasarkan hasil implementasi dan pengujian sistem pada penelitian berjudul "Penerapan Penjualan Properti", disimpulkan bahwa Blockchain pada Transaksi sistem mengkombinasikan teknologi blockchain dengan platform web yang menggunakan Node.js, MySQL, dan smart contract Ethereum untuk mendukung transaksi properti secara aman, efisien, dan transparan. Smart contract dapat merekam transaksi secara otomatis dan permanen di jaringan blockchain, sedangkan integrasi basis data relasional mempertahankan efisiensi serta konsistensi data di luar rantai. Hasil uji coba menunjukkan bahwa sistem bekerja secara optimal dalam pengujian fungsi. Namun, studi ini memiliki keterbatasan karena masih diuji pada jaringan pengujian Ethereum (Ganache) dan belum diterapkan di mainnet maupun sistem pembayaran nyata. Penelitian selanjutnya diharapkan mampu mengembangkan sistem pada jaringan blockchain publik berskala besar, menggabungkan identitas terdesentralisasi untuk otentikasi pengguna, serta mengeksplorasi interoperabilitas antara blockchain dan sistem notaris digital untuk mendukung keabsahan hukum transaksi. Secara ilmiah, studi ini berkontribusi pada pengembangan model integrasi blockchain yang menunjukkan bahwa penggabungan teknologi desentralisasi dan basis data tradisional dapat meningkatkan transparansi, keamanan, dan efisiensi transaksi aset digital.

REFERENSI

- [1] S. Perera, A. A. Hijazi, G. T. Weerasuriya, S. Nanayakkara, and M. N. N. Rodrigo, "Blockchain-Based Trusted Property Transactions in the Built Environment: Development of an Incubation-Ready Prototype," *Buildings*, vol. 11, no. 11, Nov. 2021, doi: 10.3390/BUILDINGS11110560.
- [2] D. Kastowo and D. S. Raharjo, "Analisis perbandingan penyimpanan data rekam medis elektronik berstandar FHIR pada sistem basis data: BigchainDB, MySQL dan MongoDB," *Jnanaloka*, 2023, doi: 10.36802/jnanaloka.2022.v4-no1-37-4x.
- [3] Bank Indonesia, "Survei Harga Properti Residensial (SHPR) Triwulan I 2025," Jakarta: Bank Indonesia, 2025.
- [4] A. A. SÜZEN and B. DUMAN, "Blockchain-Based Secure Credit Card Storage System for E-Commerce," *Sakarya University Journal of Computer and Information Sciences*, vol. 4, no. 2, pp. 204–215, Aug. 2021, doi: 10.35377/saucis.04.02.895764.
- [5] R. Raymond, F. Rozzi Nasution, A. Law, P. Salim, and C. Christovany, "Analisis Pengaruh Blockchain Terhadap Keamanan dan Privasi Sistem Pembayaran Kriptografi," *Indonesian Journal of Education And Computer Science*, vol. 2, no. 3, pp. 172–180, 2024.
- [6] L. Albshaier, S. Almarri, and M. M. Hafizur Rahman, "A Review of Blockchain's Role in E-Commerce Transactions: Open Challenges, and Future Research Directions," Jan. 01, 2024, *Multidisciplinary Digital Publishing Institute (MDPI)*. doi: 10.3390/computers13010027.
- [7] I. Handayani, D. Apriani, M. Mulyati, N. Aprila Yusuf, and A. Rahmania Az Zahra, "A Survey on User Experience of Blockchain Transactions: Security and Adaptability Issues," *Blockchain Frontier Technology*, vol. 3, no. 1, pp. 80–88, Jun. 2023, doi: 10.34306/bfront.v3i1.366.
- [8] O. C. Uchani Gutierrez and G. Xu, "Blockchain and Smart Contracts to Secure Property Transactions in Smart Cities," *Applied Sciences (Switzerland)*, vol. 13, no. 1, Jan. 2023, doi: 10.3390/app13010066.
- [9] K. Adha Bilqis Ibrahim and D. Gustina, "Rancang Bangun Aplikasi Berbasis Android Untuk Brand Clothing Sand Beach Dengan Skema Diskon Menggunakan Hungarian Algorithm," *Jurnal Sistem Informasi Universitas Suryadarma*, vol. 8 no. 1, 2021, doi: https://doi.org/10.35968/jsi.v8i1.608
- [10] H. Samy, A. Tammam, A. Fahmy, and B. Hasan, "Enhancing the performance of the blockchain consensus algorithm using multithreading technology," *Ain Shams Engineering Journal*, vol. 12, no. 3, pp. 2709–2716, Sep. 2021, doi: 10.1016/j.asej.2021.01.019.

blockchain into e-voting for

ISSN: 2527-9866

- [11] Tedyyana, Agus, et al. "Transforming the voting process integrating blockchain into e-voting for enhanced transparency and security." *TELKOMNIKA (Telecommunication Computing Electronics and Control)* 22.2 (2024): 311-320.
- [12] H. H. Abdul-Sada and Furkan Rabee, "The Genetic Algorithm Implementation in Smart Contract for the Blockchain Technology," *Al-Salam Journal for Engineering and Technology*, vol. 2, no. 2, pp. 37–47, Feb. 2023, doi: 10.55145/ajest.2023.02.025.
- [13] T. Górski, "Smart Contract Design Pattern for Processing Logically Coherent Transaction Types," *Applied Sciences (Switzerland)*, vol. 14, no. 6, Mar. 2024, doi: 10.3390/app14062224.
- [14] V. Miftahuljannah and A. Suharso, "PENGIMPLEMENTASIAN BERBAGAI WEB BERDASARKAN KEBUTUHAN PENGGUNA DENGAN MENGGUNAKAN METODE SYSTEMATIC LITERATURE REVIEW," *INFOTECH journal*, vol. 9, no. 2, pp. 401–405, Aug. 2023, doi: 10.31949/infotech.v9i2.6341.
- [15] J. Ahmad *et al.*, "Pemanfaatan Web-Site Sebagai Media Informasi Pengolahan Pangan Lokal," *Jurnal Pabdian Masyarakat Teknologi Pertanian*, vol. 3 no. 1, 2024. Aviable: https://ejurnal.ung.ac.id/index.php/jpmtp/article/view/26595/9016.
- [16] R. A. Sari, M. Sutrisno, A. Rahman, M. Nang, and A. Kodri, "PENERAPAN MODEL RESEARCH AND DEVELOPMENT UNTUK MEDIA BELAJAR DESAIN GRAFIS BERBASIS ANDROID," 2023. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
- [17] N. A. I. M. L. M. R. I. A. B. N. S. F. F. M. F. P. N. R. E. Zainab Tuasamu, "Analisis Sistem Informasi Akuntansi Siklus Pendapatan Menggunakan DFD Dan Flowchart Pada Bisnis Porobico."
- [18] Kus Indrani Listyoningrum, Danise Yunaini Fenida, and Nurhasan Hamidi, "Inovasi Berkelanjutan dalam Bisnis: Manfaatkan Flowchart untuk Mengoptimalkan Nilai Limbah Perusahaan," *Jurnal Informasi Pengabdian Masyarakat*, vol. 1, no. 4, pp. 100–112, Nov. 2023, doi: 10.47861/jipmnalanda.v1i4.552.
- [19] S. M. Pulungan, R. Febrianti, T. Lestari, N. Gurning, and N. Fitriana, "Analisis Teknik Entity-Relationship Diagram Dalam Perancangan Database," *JEMB*, vol. 01, no. 2, pp. 143–147, 2022, doi: 10.47233/jemb.v2i1.533.
- [20] I. F. S. S. R. R. V. R. A. P. R. T. L. I. S. P. K. F. A. Iqbal Ramadhani Mukhlis, "Perancangan Basis Data Perpustakaan Universitas Menggunakan MySQL dengan Physical Data Model dan Entity Relationship Diagram," *Journal of Technology and Informatics (JoTI)*, vol. 4, no. 2, pp. 81–87, Apr. 2023, doi: 10.37802/joti.v4i2.330.