
JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

36

EXAMINING THE IMPACT OF SOFTWARE TESTING

PRACTICES ON SOFTWARE QUALITY IN BATAM

SOFTWARE HOUSES

Suwarno1, Syaeful Anas Aklani2, Nellsen Purwandi3

1,2,3Universitas Internasional Batam

Batam, Kepulauan Riau, Indonesia 29444

e-mail: suwarno.liang@uib.ac.id1, syaeful@uib.ac.id2, 2131022.nellsen@uib.edu3

Abstract - This research aimed to investigate the impact of software testing practices on software quality

in software companies in Batam, Indonesia. It focused on identifying key factors such as Software

Testing Knowledge, Software Testing Approach, and Software Testing Complexity and analysing their

correlation with software quality. Data was collected from 48 respondents, including project managers,

developers, and QA teams, using a questionnaire distributed via Google Forms and convenience

sampling. The questionnaire was designed based on related studies to ensure relevance to the

respondents’ roles. Regression analysis identified significant impacts of testing complexity, approach

(p = 0.000), and knowledge (p = 0.003) on software quality. The F-test result (F = 32.622) confirmed a

strong relationship between testing practices and software quality. These findings emphasise the critical

role of robust testing strategies in enhancing software quality. For companies in Batam, the study offers

actionable insights, including adopting structured frameworks, and preferable action on testing

approach. Implementing these strategies can help organisations improve software outcomes and

maintain competitiveness in the evolving software development landscape.

Keywords - Software Quality, Regression Analysis, Software Testing

I. INTRODUCTION

As the software development and deployment landscape evolves, ensuring software quality and

reliability has become increasingly critical for organizations across industries [1][2]. Modern

practices such as Agile, automated testing, and CI/CD have significantly enhanced efficiency,

maintainability, and quality by enabling rigorous testing and streamlining delivery processes

[3]. However, these benefits rely on robust Software Quality Assurance (SQA), which plays a

vital role throughout the software lifecycle—from understanding customer needs to product

delivery. SQA helps prevent defects, improve processes, and ensure the final product meets

expectations, reducing time, effort, and costs [4].

Despite its importance, SQA faces challenges like a lack of skilled professionals, insufficient

knowledge, and limited resources, leading some organizations to scale back assurance activities

[5]. Nonetheless, software testing remains indispensable for early defect identification and

reliable outcomes. Testing employs diverse methods tailored to project needs, ensuring that

individual components and integrated systems function as intended [6][7]. By adopting

comprehensive practices, companies mitigate risks, enhance reliability, and meet client

expectations, gaining a competitive edge both locally and globally.

Meanwhile, The software industry in Southeast Asia has grown significantly, with Singapore,

Malaysia, and Indonesia emerging as key players. Among them, Batam, an island city in the

Riau archipelago of Indonesia, has rapidly become a prominent hub for software development,

serving both domestic and international markets. Its strategic location near Singapore and

mailto:suwarno.liang@uib.ac.id1

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

37

Malaysia makes it an attractive investment destination, fueling the expansion of the region’s

software industry [8].

Building on this context, this study aims to fill the knowledge gap by examining how different

dimensions of software testing such as the level of knowledge among practitioners, the

approaches adopted by teams, the challenges or difficulties faced during implementation, and

the specific testing methodologies employed collectively influence the overall software quality

within Batam's software houses. By exploring these interconnected aspects, the research seeks

to provide a comprehensive understanding of how testing practices contribute to software

reliability, security, maintainability, and other key quality metrics, highlighting specific

opportunities for improvement within Batam's software development landscape.

II. SIGNIFICANCE OF STUDY

A. Literature Review

A study on software testing practices in Cameroon revealed significant challenges in adopting

structured testing and automation. Over 80% of respondents relied on developer-led testing

without formal methodologies, and automated testing comprised less than 8% of tests. Key

barriers included time and cost constraints, lack of perceived usefulness, and concerns about

maintaining automated tests. The findings underscore the importance of promoting effective

testing practices in resource-constrained environments like Cameroon [5].

A study on test automation maturity in the software industry, based on data from 151

respondents in 101 organizations across 25 countries, revealed significant variation in practices.

While 85% reported adequate automation skills, 47% lacked guidelines for automated test

design and execution. Higher maturity correlated with a greater percentage of automated test

cases and Agile/DevOps adoption. QA engineers were more optimistic about maturity levels

than consultants. The findings emphasize the need to address skill gaps, adopt mature practices,

and establish guidelines to maximize the benefits of test automation [9].

A qualitative study on software quality practices in startups revealed that these companies often

adopt limited approaches shaped by team maturity, organizational culture, and prior

experiences. Startups typically address quality reactively, responding only to issues that affect

the product, business, or customers, or when technical debt becomes overwhelming. However,

the study’s reliance on interviews posed a threat to construct validity, as responses from

participants could introduce gaps, biases, or inaccuracies in the findings [10].

This study builds on previous research by adopting a purely quantitative approach to minimize

biases and enhance objectivity, addressing limitations from earlier studies that often combined

qualitative and quantitative methods. Unlike prior research, which primarily focused on

technical testing aspects, this study broadens its scope to include testing knowledge and

complexity for a more comprehensive analysis. To improve response validity, the survey

incorporates specific and targeted questions, moving beyond the general queries used in earlier

studies. Additionally, regression analysis is employed to explore the relationships between

knowledge, complexity, and testing practices, providing deeper insights and addressing gaps in

statistical rigor. While similar studies exist in other regions, there is limited research on software

testing practices in Indonesia. This study fills that gap, offering valuable perspectives on the

local software industry.

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

38

B. Research Method

This study used a questionnaire as the primary validation method due to its ability to collect

extensive data from a sample size at a relatively low cost. A questionnaire ensures all

respondents receive the same set of questions, maintaining consistency in data collection and

enhancing result reliability, particularly for complex research questions in specific contexts.

1. Questionnaire Construction

Building on issues in software testing procedures identified in related work and their impact on

software quality, this study developed research questions and a data collection tool. The goal

was to explore how current software testing knowledge, practices, and complexities influence

quality across companies. The research questions (RQs) were:

• RQ1: What do managers, developers, and quality control (QC) professionals know about

software testing?

• RQ2: What software testing approaches are used by managers, developers, and quality

control (QC) professionals in projects?

• RQ3: How do managers, developers, and quality control (QC) professionals perceive the

complexity of the testing process?

• RQ4: How successful is the project in terms of software quality attributes?

To design a focused survey, we reviewed similar studies and crafted questions addressing recent

themes while minimizing redundancy, and ensuring relevance and clarity for respondents. The

questionnaire includes five sections, beginning with respondent profiles through four closed-

ended questions: age, job title, years of experience, and company size. This structure aligns

with methodologies from related research [11], [12].

The second section of the questionnaire analyzes respondents' understanding of software

testing, which is vital for ensuring systems function as intended and meet requirements.

Expertise in software testing includes knowledge of various procedures, approaches, and

strategies. This section evaluates respondents' proficiency through two key questions assessing

both theoretical and practical knowledge. The evaluation uses a 1-5 scale, with 1 representing

"very low" and 5 representing "very high." This approach builds on earlier studies [12], which

similarly explored the level of software testing expertise among professionals in the field.

The third section examines the testing approaches used in respondents' projects, focusing on

objectives, techniques, and perceived benefits. It draws on previous studies, such as Eisty et al.

[13], and it categorizes methods into unit, integration, system, acceptance, and module testing

[7], [14]. Additionally, testing techniques are classified into black box, white box, and grey box

based on prior research [15]–[17]. This section includes closed-ended questions about testing

objectives and a series of 1-5 scale questions to assess the frequency, usefulness, and application

of each testing method.

Another section examines software testing complexities and their impact on software quality.

As modern systems grow more complex, adopting well-defined testing approaches is

increasingly vital to understanding how varying methods influence project outcomes. This

section has previously been conducted to determine the specific complexities and challenges

that have been encountered when conducting software testing in the organization to gain a more

comprehensive understanding of the testing landscape [13], [18]. Respondents are asked to rate

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

39

the complexity of the testing process in their projects and to evaluate the level of challenges

faced during their testing activities using a 1-5 scale.

The final section of the survey addresses software quality attributes, a critical element structured

around a standard software quality model. It evaluates key attributes such as reliability, security,

maintainability, functionality, performance efficiency, compatibility, portability, usability, and

overall quality. These evaluations aim to reveal the influence of different testing approaches

and knowledge levels on product quality. Drawing on prior research, including Binboga and

Gumussoy [19], which examined factors affecting software quality, this section builds on their

findings to assess these attributes comprehensively. Seven targeted questions guide this

analysis, with responses rated on a 1-5 Likert scale.

2. Variables and Hypothesis

The instrument is based on the model's variables from the research questions, including three

independent variables (Software Testing Knowledge, Approach, and Complexity) and one

dependent variable (Software Quality), as shown in Figure 1. These variables interact to provide

a comprehensive evaluation of Software Quality Assurance, allowing for a detailed analysis of

the software product and development environment.

Figure 1. Research Model

Figure 1 uses a model in this study that binds between variables with other variables. Thus,

several hypotheses can be made based on the relationship between the variables. The hypothesis

used in this study is as follows:

H1 = Software Testing Knowledge Affects Software Quality in Batam Software House.

H2 = Software Testing Approach Affects Software Quality in Batam Software House.

H3 = Software Testing Complexity affects Software Quality in Batam Software House.

3. Sampling

Similar to the research by Sultana et al. [15], this study used Google Forms to collect data. The

conclusive iteration of the online survey was disseminated using the convenience sampling

method as one of the dominant approaches widely used in surveys [9]. Our study targeted 48

valid responses from Developers, QA/QC, and Project Managers in Batam, Indonesia, all of

whom were actively involved in the software development process. like the study conducted by

author Neves, Lucas, et al. [12]. Afterwards, the authors conducted a pilot test of the

questionnaire, following the approach used by author Eisty et al [13] and author Martins, Luana,

et al [20], to thoroughly review the questions. The results of the pilot test will be employed to

evaluate the reliability and validity of the respondent's answers.

4. Data Analysis

We will use multiple regression analysis in SPSS to test the hypotheses and evaluate

relationships between software testing practices and software quality. This approach examines

the combined impact of independent variables (such as software testing knowledge, approach,

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

40

and complexity) on the dependent variable, software quality. Specifically, the study will apply

several diagnostic tests to ensure the validity and robustness of the model:

• Validity and Reliability Testing: The survey instruments were assessed using Pearson

Correlation Coefficients (p < 0.05) to ensure meaningful relationships aligned with the

study's constructs, and Cronbach's Alpha (above 0.6) for internal consistency.

• Outlier Detection: Outliers were identified using Z-scores, flagging values greater than

3 or less than -3 to prevent distortion.

• F-Test: Assessed the statistical significance of the regression model, determining if the

independent variables explained a significant portion of variance in software quality.

• R Square: Measured how well the independent variables accounted for the variation in

software quality, with higher values indicating a better fit for the model.

• T-Test: Evaluated the significance of each independent variable's impact on software

quality, helping identify the most influential factors.

• Normality Test: tested residuals for normality to ensure normally distributed errors,

which is crucial for valid hypothesis testing in regression analysis.

• Multicollinearity Check: Variance Inflation Factor (VIF) was calculated to detect

multicollinearity among independent variables. High multicollinearity could distort the

regression results, so any issues were addressed to ensure accuracy.

• Heteroscedasticity Test: Tests for heteroscedasticity were performed to identify non-

constant error variances. If heteroscedasticity was present, adjustments were made to

maintain the efficiency and reliability of the regression model.

This study refers to previous research by Authors Sitepu [21] and Siahaan [22], which also used

regression analysis to test the impact of various factors on the optimization of information

technology use. The findings from that research serve as a reference for the approach used in

analyzing the survey results in this study.

III. RESULTS AND DISCUSSION

A. Respondents Profile

Based on the questionnaire results, as shown in Table 1, most respondents fall within the 17-24

age range, indicating a strong presence of younger professionals and students in the participant

pool. The second largest group is aged 25-34, representing mid-career professionals with

several years of industry experience. A smaller percentage is in the 35-44 age group, while no

data was recorded for the 45-54 and 54+ age ranges. This age distribution highlights the

workforce composition in the local software industry and may reflect generational trends in

software testing practices.

TABLE I

RESPONDENTS PROFILE

 As shown in Figure 2a, most respondents are employed by companies with over 100

employees. Only one respondent works for a company with fewer than 10 employees, and

Age Group Frequency Percentage

17 - 24 years old 27 56.25%

25 - 34 years old 18 37.5%

35 - 44 years old 3 6.25%

Total 48 100%

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

41

another for a company with 10–50 employees. Two respondents are from companies with 51–

100 employees.

(a) (b) (c)
Figure 2. (a) Company Size (b) Employee Experience (c) Respondent Role

Regarding software testing experience in Figure 2b, most respondents (31) reported having 1–

5 years of experience. Nine respondents indicated less than a year of experience, while eight

reported 6–10 years. No respondents reported more than 10 years of experience. For roles

within the company, as shown in Figure 2c, the largest group of respondents are Software

Developers (43.75%), followed by Programmers (18.75%). Project Managers, QA/QC

personnel, and others each represent 12.5% of the total.

B. Software Testing Knowledge

To better understand the respondents' software testing expertise, we concentrated on collecting

information for RQ1, as illustrated in Figure 3, explicitly evaluating both theoretical and

practical comprehension. Most respondents rated their theoretical knowledge at level 4,

followed by levels 3 and 5. For practical knowledge, 47.9% also assessed their comprehension

at level 4, with levels 3 and 5 each receiving 25%.

Figure 3. Employee’s Software Testing Understanding

C. Software Testing Approach

This Software Testing Approach section will elaborate on RQ2, focusing on software testing

goals, testing levels, testing usefulness, and the specific techniques applied by teams in Batam

software houses to assess their impact on software quality.

Figure 4 shows the results for software testing goals. At Level 0, only two respondents need to

differentiate testing from debugging, showing a basic misconception. Similarly, at Level 1, two

respondents view testing to demonstrate correctness, reflecting limited awareness. Level 2 sees

a shift, with 10 respondents acknowledging that testing identifies software flaws, signalling a

more analytical approach. Level 3, supported by 19 respondents, emphasizes testing as a risk

management tool rather than proving correctness, showcasing maturity in understanding.

Finally, at Level 4, 15 respondents perceive testing as a mental discipline fostering higher-

quality software, underlining its role in promoting a culture of excellence.

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

42

Figure 4. Employee’s Software Testing Understanding

The survey results illustrate the frequency of various project testing methods, expressed in

percentages, as shown in Figure 5. The software testing level focuses more on unit, system, and

acceptance testing, which are used more frequently at higher levels, indicating their critical role

in ensuring software quality. Unit testing is consistently emphasized, most likely due to its

efficacy in detecting early-stage defects. System and acceptance testing are also heavily

utilized, focusing on overall system functionality and stakeholder requirements. In contrast,

integration and module testing are more evenly distributed, implying a balanced approach in

which these methods are used based on project needs but not with the same intensity as the

other testing phases.

Figure 5. Software Testing Level

The survey shows that most respondents view software testing as highly beneficial, with 47.9%

rating it a 5 and 39.5% rating it a 4, indicating its key role in project success. However, 6.5%

rated it a 3, suggesting some areas for improvement, while 4% rated it a 2 and 2% a 1, reflecting

limited value in some instances. These results highlight software testing as essential but point

to opportunities for better integration and effectiveness in some projects.

The use of software testing techniques reveals a strong preference for white box testing, as

shown in Figure 6, with the majority of responses concentrated at higher levels, emphasizing

understanding internal code structures. Black box testing, which does not require knowledge of

internal workings, has a more even distribution but still tends to be used more frequently. Grey

box testing falls somewhere in the middle, displaying a range of responses with moderate to

high levels of utilization, highlighting its hybrid method that incorporates both internal and

external perspectives.

Figure 6. Software Testing Technique

D. Software Testing Complexity

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

43

This section addresses RQ3 by analyzing respondents' perspectives on the complexities of

software testing and the challenges they encounter. It explores factors influencing the

effectiveness of quality assurance activities and how these complexities impact the success of

software testing operations.

Figure 7. Complexity of the Testing Process and Level of Challenge Faced

Figure 7 illustrates that many respondents perceive the testing process as highly complex, with

a significant portion describing it as very challenging. Most teams report encountering

substantial complexity in their software testing activities, while only a small minority consider

the process straightforward. Similarly, the challenges faced in software testing are generally

rated as demanding, with a noticeable proportion of participants identifying them as significant

obstacles. A smaller group views these challenges as moderate or minimal, indicating that the

testing process remains a rigorous task for most teams.

E. Software Quality

This section will elaborate on RQ4 by examining the various dimensions of software quality,

including reliability, security, maintainability, functionality, performance efficiency,

compatibility, portability, usability, and overall quality.

Figure 8. Software Quality Attributes

Figure 8 highlights strong software quality performance across dimensions. Metrics like

reliability, security, and maintainability received high ratings, with over 85% of respondents

scoring them 4 or 5. Functionality and performance efficiency also rated well, with positive

ratings from 88% and 86% of respondents, respectively. Compatibility and portability were

similarly well-regarded, earning favorable ratings from over 85%. Usability stood out with the

highest positive feedback, as 91% of respondents rated it 4 or 5. The chart underscores the

software's strengths in, ease of use, efficiency, and adaptability across platforms.

Figure 9. Overall Software Quality

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

44

Ultimately, the project's success in terms of quality, as shown in Figure 9, is reflected in the

majority of responses concentrated at higher levels, particularly 4 and 5. This indicates that

most respondents feel positively about the quality achieved during the project. The minimal

responses at lower levels (1, 2, and 3) suggest few concerns regarding quality. Overall, the data

demonstrates a strong perception of success in the project's quality outcomes.

F. Validity and Reliability

This research assessed validity and reliability through pilot testing with 30 respondents.

Validity was tested using Pearson Correlation Coefficients, requiring significant values below

0.05 and coefficients above 0.05, which all met the criteria. Reliability was evaluated using

Cronbach's Alpha, with variables considered reliable if values exceeded 0.6.

TABLE 2

RELIABILITY TEST RESULT

As shown in Table 2, all indicators have Cronbach's Alpha values greater than 0.6. Therefore,

each variable in this study is declared reliable.

G. Outlier Test

In this study, the potential for outliers from the respondents’ results was mitigated by the choice

of the measurement scale precisely because most of the questions in this research used the 5-

point Likert scale. To ensure the integrity of the data, an outlier analysis was conducted. The

method for detecting outliers is using Z-scores, which are Standardized scores that indicate how

many standard deviations an observation is from the mean. After thorough analysis using these

SPSS tools, no outliers were detected in the dataset.

H. F-Test and T-Test

The F-test conducted in this study yielded a p-value of 0.000, indicating a highly statistically

significant result. The calculated F-statistic was 32.622, which aligns with the expected critical

F-value of 30 from the F-distribution table. This solid statistical evidence suggests that all the

independent variables included in the analysis significantly impact the dependent variable being

examined in this study. The model also included a T-test to examine the significance of the

coefficients. The findings indicate that the significance levels for software testing complexity

and approach are 0.000. However, the significance level for software testing knowledge is

slightly different at 0.003. These findings indicate that software testing knowledge, software

testing approach, and software testing complexity all have a statistically significant impact on

the dependent variable, software quality.

I. R-squared

The R-squared value of 0.690 indicates that 69% of the variance in software quality is explained

by the independent variables: software testing knowledge, approach, and complexity. This

highlights their significant role in determining software quality. However, the remaining 31%

of the variance is due to factors not included in this study, such as team collaboration, project

management practices, resource allocation, or external influences like market conditions and

Variable Cronbach's Alpha Number of Items Status

Software Testing Knowledge 0.815 2 Valid

Software Testing Approach 0.931 10 Valid

Software Testing Complexity 0.710 2 Valid

Software Quality 0.885 9 Valid

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

45

user feedback. Further research is needed to investigate these factors for a more comprehensive

understanding of software quality dynamics.

J. Normality Test and Heteroscedacisty Test

The normality test results indicate that the data is normally distributed, as the probability plot

shows little deviation from the reference diagonal line, as shown in Figure 10a. This suggests

the data follows a normal distribution, making it suitable for further statistical analysis. The

alignment of the data points with the diagonal line in the probability plot confirms that any

deviations from normality are minimal, supporting the assumption of normality required for

many statistical models used in this study

(a) (b)

Figure 10. (a) Normality Test Result (b) Heteroscedasticity Test Result

The heteroscedasticity test results reveal no evidence of heteroscedasticity, as shown in Figure

10b. This is supported by the scatterplot, where the data points are evenly dispersed without

forming distinct patterns (wavy, expanding, then narrowing). The uniform distribution of the

points indicates that the variance of the residuals is consistent, satisfying a key assumption for

reliable regression analysis

K. Multicollinearity Test

The multicollinearity test results reveal no significant issues among the independent variables:

software testing complexity, approach, and knowledge. Software testing complexity has a VIF

of 1.806 and a tolerance of 0.554, indicating no strong correlation with other variables. The

software testing approach shows a VIF of 1.768 and a tolerance of 0.566, while software testing

knowledge has the lowest VIF (1.542) and highest tolerance (0.649), confirming low

multicollinearity. With all VIF values below 5 and tolerance values above 0.2, multicollinearity

is not a concern, ensuring the model's accuracy and validity.

L. Interpretation of Hypothesis Test Results

The first hypothesis demonstrates that Software Testing Knowledge positively affects Software

Quality in Batam software houses. This finding indicates that as user theoretical and practical

knowledge of software testing increases, it enhances various aspects of software quality.

Moreover, this result reinforces prior findings [9], which are positioned in the middle and more

to the right side of the scale. This highlights the importance of continuous learning and company

development in the field of software testing, suggesting that the company must invest in the

knowledge and skills of software testing, which can lead to significant improvements in the

quality of software products developed in Batam's

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

46

The second hypothesis indicates that the Software Testing Approach positively impacts

Software Quality in Batam software houses. Survey results suggest that aligning testing with

higher-level goals (Levels 3 and 4) improves software quality by helping organizations develop

more effective strategies. This study supports prior research [5], confirming that unit testing

and integration testing are the most widely used levels. Unit testing is effective in identifying

defects early in development, while integration testing ensures seamless component interaction.

System and Acceptance Testing received high ratings for validating overall functionality and

meeting user requirements. However, Module Testing received moderate ratings, highlighting

areas for improvement and the need for structured testing guidelines. Most respondents

emphasized the importance of software testing in enhancing quality. White-box testing emerged

as the most frequently used method, valued for its ability to detect defects early and improve

reliability. In contrast, black-box and grey-box testing received mixed evaluations, suggesting

the need for refinement in their application. These findings challenge prior research, which

positions black-box testing as the most common method, and reveal a context-specific

preference for white-box testing in Batam’s software houses. This preference underscores the

practical value of white-box testing in addressing early-stage defects and ensuring better

software outcomes. The study suggests that software practitioners prioritize white-box testing

while complementing it with black-box methods for a more comprehensive quality assurance

strategy.

The third hypothesis demonstrates that complexity significantly impacts software quality in

Batam software houses. This variable encompasses two key indicators: the software testing

process's complexity and the users' challenges. Both indicators prove to be influential factors

affecting software quality. As the testing process becomes more complex, it often involves

multiple testing gates, stages, or criteria, serving as comprehensive parameters for ensuring

successful software development. On the other hand, the challenges users encounter during

testing play a crucial role. Rather than being solely obstacles, these challenges serve as

opportunities for gaining valuable experience and refining the testing process. They indicate

that the software testing is thorough and rigorous, enhancing the final product's overall quality.

The complexity of testing procedures and the user-faced challenges are positive indicators of a

robust and effective software testing process, ultimately leading to improved software quality.

This study reinforces prior findings [5], as some difficulties occur during testing, impacting the

software testing activity. Practitioners are encouraged not to avoid complex testing processes

but to view them as opportunities to identify deep-seated issues that can enhance the overall

quality of the software.

This study demonstrates that software testing knowledge, appropriate approaches, and effective

complexity management collectively improve software quality. For instance, teams with a deep

understanding of specific testing approaches are better equipped to address complexity

challenges, ultimately producing more reliable, secure, and user-oriented products.

Collectively, these independent variables influence the dependent variable, offering more

profound insights into the dynamics studied. For example, the combined effect of testing

approaches and complexity management on software security provides a more holistic view of

how software quality is enhanced. Future research could further explore how these variables

interact to impact specific dimensions of software quality, such as performance efficiency or

compatibility, offering more targeted insights for the industry.

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

47

IV. CONCLUSION

In conclusion, this study aimed to evaluate the impact of software testing practices on software

quality. The results revealed that software testing knowledge, approach, and complexity

significantly influence software quality. Software testing knowledge was found to directly

enhance software quality by enabling testers to effectively identify and resolve issues, with a

significant p-value (0.003) showing that increased knowledge improves defect detection and

resolution. The software testing approach, including methods like unit, system, and acceptance

testing, ensures comprehensive coverage and addresses potential issues at different stages. Unit

testing detects early defects, system testing checks component interactions, and acceptance

testing verifies user requirements. The preference for white-box testing further emphasizes its

role in improving software quality by focusing on internal structures. Additionally, testing

complexity helps in identifying edge cases and reducing undetected errors, contributing to more

robust software. The study also identified areas for further exploration, such as the frequency

of testing cycles, integration of testing tools, and emerging technologies in testing, which were

not covered in the current model but could significantly enhance testing effectiveness. Future

research should explore these aspects to build a more comprehensive understanding of their

impact on software quality. Finally, as the data was limited to a single geographic location, the

findings may only generalize across some contexts. Expanding research to more diverse settings

would help validate and broaden the applicability of these insights.

REFERENCE

[1] S. O. Barraood, H. Mohd, F. Baharom, and A. Almogahed, “Verifying Agile Black-Box Test Case

Quality Measurements: Expert Review,” IEEE Access, vol. 11, pp. 106987–107003, 2023.

[2] H. Sama, “School Operational Effectiveness Analysis Web Based Event System with Dynamic

Systems Development,” J. Inf. Technol. Educ. Res., vol. 3, no. 1, pp. 76–84, 2019.

[3] P. N. Mata, J. M. Martins, and J. C. Ferreira, “New Software Product Development: Bibliometric

Analysis,” J. Knowl. Econ., pp. 1–24, 2024.

[4] T. Agrawal, G. S. Walia, and V. K. Anu, “Development of a Software Design Error Taxonomy: A

Systematic Literature Review,” SN Comput. Sci., vol. 5, no. 5, 2024.

[5] T. Maxime Carlos and M. N. Ibrahim, “Practices in Software Testing in Cameroon Challenges and

Perspectives,” Electron. J. Inf. Syst. Dev. Ctries., vol. 87, no. 3, pp. 1–17, 2021.

[6] V. Vukovic, J. Djurkovic, M. Sakal, and L. Rakovic, “An Empirical Investigation of Software

Testing Methods and Techniques in the Province of Vojvodina,” Teh. Vjesn., vol. 27, no. 3, pp.

687–696, 2020.

[7] Kusum, P. Talwar, A. Puri, and G. Kumar, “Overview of Software Testing,” Glob. J. Eng. Technol.

Adv., vol. 19, no. 1, pp. 104–112, 2024.

[8] R. P. Abdi, “Asessing the Impacts of Paradiplomacy on Batam-Singapore Cooperation: A Case

Study in Tourism, Economic Growth, and Infrastructure Development,” J. Parad. City Networks,

vol. 2, no. 1, pp. 12–20, 2023.

[9] Y. Wang, S. Demeyer, K. Wiklund, S. Eldh, and T. Kairi, “Software Test Automation Maturity -

A Survey of the State of the Practice,” in arXiv preprint arXiv:2004.09210., 2020.

[10] A. Pizzini, R. Bortolo Vieira, R. Deda Gomes, G. Santos, A. Malucelli, and S. Reinehr, “Software

Quality Practices in Growing Startups,” in SBQS ’21: Proceedings of the XX Brazilian Symposium

on Software Quality, 2021, no. 13, pp. 1–10.

[11] B. Latif and T. Rana, “A Preliminary Survey on Software Testing Practices in Khyber

PakhtunKhwa Region of Pakistan,” Turkish J. Electr. Eng. Comput. Sci., vol. 28, no. 1, pp. 575 –

589, 2020.

[12] L. Neves, O. Campos, R. Santos, C. Magalhaes, I. Santos, and R. de S. Santos, “Elevating Software

Quality in Agile Environments: The Role of Testing Professionals in Unit Testing,” in 2024 IEEE

International Conference on Software Testing, Verification and Validation Workshops (ICSTW),

2024, pp. 293–296.

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO.1, MARET 2025 ISSN:2527-9866

48

[13] N. U. Eisty and J. C. Carver, “Testing Research Software: A Survey,” Empir. Softw. Eng., vol. 27,

no. 6, pp. 1–32, 2022.

[14] S. M. Melo, V. X. S. Moreira, L. N. Paschoal, and S. R. S. Souza, “Testing Education : A Survey

on a Global Scale,” in 34th Brazilian Symposium on Software Engineering (SBES ’20), 2020, pp.

554–563.

[15] N. Sultana, M. Syeed, and K. Fatema, “An Empirical Investigation on Quality Assurance Practices

in Software Industries: Bangladesh Perspective,” Int. J. Softw. Eng. Comput. Syst., vol. 6, no. 2, pp.

1–10, 2020.

[16] J. Skalka and M. Drlik, “Development of Automatic Source Code Evaluation Tests Using Grey-

Box Methods: A Programming Education Case Study,” IEEE Access, vol. 11, pp. 106772–106792,

2023.

[17] M. A. Umar and C. Zhanfang, “A Comparative Study of Dynamic Software Testing Techniques,”

Int. J. Adv. Netw. Appl., vol. 12, no. 03, pp. 4575–4584, 2020.

[18] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloğlu, and S. Eldh, “Exploring the Industry’s

Challenges in Software Testing: An Empirical Study,” J. Softw. Evol. Process, vol. 32, no. 8, pp.

1–28, 2020.

[19] B. Binboga and C. A. Gumussoy, “Factors Affecting Agile Software Project Success,” in IEEE

Access, 2024, vol. 12, pp. 95613–95633.

[20] L. Martins, V. Brito, D. Feitosa, L. Rocha, H. Costa, and I. Machado, “From Blackboard to the

Office : A Look Into How Practitioners Perceive Software Testing Education,” in EASE ’21:

Proceedings of the 25th International Conference on Evaluation and Assessment in Software

Engineering, 2021, pp. 211–220.

[21] R. B. Sitepu, M. S. Ilham, T. Handriana, and P. Yulianti, “Effect of Information Technology

Capital: Technology Infrastructure, Database, Software, and Brainware Toward Optimize the Use

of Information Technology (Case Study: UIN Sunan Ampel Of Surabaya),” Libr. Philos. Pract.,

2021.

[22] M. Siahaan and N. Legowo, “The Citizens Acceptance Factors of Transportation Application

Online in Batam: An Adaptation of the UTAUT2 Model and Information System Success Model,”

J. Theor. Appl. Inf. Technol., vol. 97, no. 6, pp. 1666–1676, 2019.

