
JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

296

ADAPTIVE DYNAMIC ACTIVITY MAPPING: A NOVEL

APPROACH TO REAL-TIME HEATMAP WITH YOLO v8

Nursiyanto1, Dona Yuliawati2, Anggi Andriyadi*3

1,2,3Department of Information Systems, Faculty of Computer Science

Institut Informatika dan Bisnis Darmajaya, Jl. ZA. Pagar Alam No.93 3514, Bandar Lampung
1ikinursiyanto@darmajaya.ac.id, 2donayuliawati@darmajaya.ac.id, 3anggi.andriyadi@darmajaya.ac.id

Abstract – Adaptive Dynamic Activity Mapping presents a novel approach for real-time heatmap

visualization in object detection systems. Traditional heatmap methods often suffer from ghost effects and

fixed kernel sizes, limiting their effectiveness in dynamic scenes. This paper introduces an adaptive approach

that integrates with YOLOv8 object detection to provide more accurate and responsive visualization.

Performance evaluation across different scenarios demonstrates significant improvements, achieving 97%

faster processing in simple scenes while maintaining efficient memory utilization with a 4% reduction

compared to traditional methods. While traditional approaches show higher temporal consistency (0.99 vs

0.89), our method eliminates ghost effects and provides better heat uniformity in crowded scenes (0.2495 vs

0.1849). The system employs dynamic kernel generation that adapts to object dimensions, addressing a

fundamental limitation of fixed-size kernels in traditional implementations. Experimental results validate the

effectiveness of our approach in balancing processing efficiency, visualization quality, and resource

utilization, particularly in scenarios requiring accurate temporal representation and clean visualization of

object activities.

Keywords - Adaptive heatmap, Object detection, YOLOv8, Real-time visualization, Activity mapping.

I. INTRODUCTION

Object detection is one of computer vision's most critical and essential tasks, aimed at searching for

and recognizing objects in images [1]. While object detection provides the foundational analysis,

visualization transforms this data into interpretable information that can hide complex details,

highlight areas of interest, and provide varying degrees of abstraction [2] [3]. This symbiotic

relationship between object detection and visualization [4],[5]. enhances human perception of

detection results, facilitates understanding of model behavior, and enables effective system

debugging [6] [7]. Consequently, modern visualization technique research has focused on detecting

images [8]. Many methods have been published to reveal deep learning mechanisms, but few

provide concrete visual cues or expose internal decisions [9]. Therefore, there is a growing need for

advanced visualization techniques to provide real-time, adaptive, and efficient representation of

object detection results. Among various object detection algorithms, YOLOv8 (You Only Look

Once v8) has emerged as a leading framework for real-time applications due to its efficiency and

accuracy in handling diverse detection tasks [10]. By integrating YOLOv8 with heatmap

visualization, developers can achieve more explainable and interactive object detection

systems[11][12], It is because, heatmaps are particularly effective for representing spatial data in

object detection architectures, providing users with improved result interpretation capabilities.

However, current heatmap visualization techniques face several critical challenges that limit their

effectiveness [13]. The primary challenge lies in fixed kernel limitations that prevent adaptation to

varying object sizes, coupled with substantial processing overhead in real-time systems. These

issues are further compounded by high memory consumption that significantly impacts overall

performance [14]. Additionally, developers face considerable difficulty in balancing visualization

quality with real-time processing requirements [15] These multifaceted challenges underscore the

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

297

pressing need for advanced solutions that can meet critical industry requirements, including real-

time processing capability, adaptive visualization mechanisms, and resource-efficient

implementation [16]. These requirements are essential for developing practical and effective

visualization systems that can operate in real-world conditions.

1. Heatmap Visualization

Heatmap displays can be used to interpret object detection since colour encoding best represents

spatial data [17]. They simplify complex information and allow for easy observation of patterns

[18]. Visualizations are essential in machine learning and intense learning applications [19].

Visualization and deep learning together provide a comprehensive data analysis [20]. Object

detection can classify images and detect the object bounds [21]. Heatmaps provide visual clues for

spatial positioning and are commonly used in activity recognition and human pose estimation [22].

2. Limitation of Traditional Heatmap

The traditional heatmap techniques used for object detection have limitations in handling scale and

size variations [23]. The heatmaps cannot be scaled with small details and are unsuitable for actual

video feeds [24]. It also cannot map temporal information or operate on human behavior datasets

[25]. The heatmap generation process requires intensive computational resources, while traditional

background models fail to perform effectively in dynamic environments [26]. Traditional

previously used methods are not location or climate-specific and present difficulties in real-time

object identification [27]. In addition, in the case of object scales, the traditional heatmap

visualization for object detection poses a constraint in scaling and is thus not accurate [28]. Static

decay rates can cause ghosting or objects vanishing at a very high speed, thus complicating object

tracking [29]. High memory usage and computation needs are the main challenges to real-time

utilization. It may also be noted that the inability to change stance decreases detection efficiency

when the conditions constantly change, leading to missed detections [29]. Some of the problems

with the visualization quality, for example, blurring, complicate the interpretation of the heatmap

[30]. Enhancement is required to create more accurate, up-to-date, dynamic spatial data models.

3. Propose Method

Traditional heatmap techniques face significant limitations in handling scale and size variations. To

address these challenges, we introduce Adaptive Dynamic Activity Mapping (ADAM), which

implements adaptive kernel generation to handle varying object sizes while maintaining efficient

performance. First, ADAM uses adaptive kernel generation, which adapts to object sizes and

replaces static kernel methods. Secondly, ADAM combines with YOLO88 to conduct accurate

object detection, especially in the case of different object scales. Third, dynamic decay rates that

adapt to area activity levels are used to implement temporal management in ADAM. It removes the

typical 'ghost effect' of traditional systems while keeping essential temporal information in less

active regions. ADAM optimises for accurate real-time performance with high-quality visualization

by minimising memory usage and maximising processing efficiency.

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

298

II. SIGNIFICANCE OF STUDY

This section presents the methodology of ADAM, our proposed solution for real-time heatmap

visualization in object detection.

1. ADAM Flowchart

As shown in Figure 1, YOLOv8 is used as the object detection engine at the input stage to produce

the bounding boxes and confidence scores, which are then used by ADAM's core components to

produce heatmaps.

Figure 1. ADAM’s Flowchart

The interaction between these components forms a streamlined pipeline where each module

performs specialized tasks, starting from object detection through YOLOv8 to the final heatmap

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

299

visualization. The following sections detail each component's role and their mathematical

foundations, beginning with the YOLOv8 Detection Component.

2. YOLOv8 Detection Company

YOLOv8 is the primary input module in ADAM, providing robust object detection capabilities with

three essential parameters: intersection over union (IoU) threshold for Non-Maximum Suppression

(NMS), confidence threshold, and model weights. NMS eliminates redundant detections by keeping

the highest confidence detection when overlapping areas. BaseDetector standardizes the detection

interface and ensures each video frame is processed consistent mathematical framework of the

detection process is defined as:

𝐷(𝑓) = {(𝑏𝑖 , 𝑐𝑖, 𝐼𝑖)|𝑖 = 1, … … , 𝑛} (1)

Where:

• 𝐷(𝑓) represents the detection output for frame 𝑓

• 𝑏𝑖 = (𝑥1, 𝑦1, 𝑥2, 𝑦2) is bounding box coordinates

• 𝐶𝑖 is the confidence score of the dection

• 𝐼𝑖 is the class label

• 𝑛 is the number of detected objects in the frame

Object filtering is applied through two threshold parameters:

𝑃(𝑏𝑖) = {
1, 𝑖𝑓𝑐𝑖 ≥ 𝜏𝑐 𝑎𝑛𝑑 𝐼𝑜𝑈 < 𝜏𝑖𝑜𝑢

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Where:

• 𝜏𝑐 = 0.25 is the confidence threshold

• 𝜏𝑖𝑜𝑢 = 0.45 for NMS threshold

• 𝑃(𝑏𝑖) 1 for retained, 0 for discarded detection

These filters help to feed only the high-confidence detections to the Adaptive Heatmap component,

improving accuracy and computational complexity. Moreover, the detector predicts the coordinates

of boxes at the spatial level, the confidence score, and the class label, which are passed to the Kernel

Generator in the following pipeline.

3. Kernel Generation Component

The Kernel Generator is an important module that synthesizes adequate Gaussian kernels in

accordance with the sizes of identified objects. Conventional approaches employ kernels of fixed

size, while in ADAM, kernel size changes according to the spatial dimensions of the detected

objects, providing a more accurate depiction of activity distribution. The adaptive Gaussian kernel

is generated using the following equation:

𝐾(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
(𝑥−𝜇𝑥)2+(𝑦 − 𝜇𝑦)2

2𝜎2) (3)

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

300

Where:

• (𝑥, 𝑦) represents the pixel coordinates.

• (𝜇𝑥. 𝜇𝑦) is the center of the detected object.

• 𝜎 is the adaptive standard deviation.

The adaptive standard deviation σ is calculated based on object size:

𝜎 = 𝑚𝑎𝑥 (𝑤, ℎ) × 𝛼 (4)

Where:

• 𝑤 is the width of the detected object

• ℎ is the height of the detected object

• 𝛼 = 0.15 is the spatial sigma factor

The generated kernel is then normalized to ensure the sum of all kernel values equals one:

𝐾𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝑘(𝑥,𝑦)

∑ 𝐾(𝑥,𝑦)𝑥,𝑦
 (5)

Where:

• 𝐾𝑛𝑜𝑟𝑚(𝑥, 𝑦) is the normalized kernel

• 𝐾(𝑥, 𝑦) is the original kernel

• ∑ 𝐾(𝑥, 𝑦)𝑥,𝑦 is the sum of all kernel values

The normalized kernel is then passed to the Adaptive Heatmap Component, which is responsible

for managing three key aspects: temporal decay for historical data preservation, activity map

updates for current detections, and intensity normalization for balanced visualization.

4. Adaptive Heatmap Component

The Adaptive Heatmap Component manages the temporal evolution and intensity distribution of

the activity map through three main processes: temporal decay, activity update, and intensity

normalization. For each frame, the heatmap and activity map undergo temporal decay to maintain

historical context while emphasizing recent activities. The temporal decay process is defined as:

𝐻𝑡 = 𝐻𝑡−1 × 𝛽 (6)

Where:

• 𝐻𝑡 is the heatmap at current time 𝑡

• 𝐻𝑡−1 is the heatmap from previous frame

• 𝛽 = 0.95 is the temporal decay factor

For each new detection, the heatmap is updated with the confidence-weighted kernel:

𝐻𝑡(𝑥, 𝑦) = 𝐻𝑡(𝑥, 𝑦) + 𝐾𝑛𝑜𝑟𝑚(𝑥, 𝑦) × 𝐶𝑖 (7)

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

301

Where 𝐾𝑛𝑜𝑟𝑚(𝑥, 𝑦) is the normalized kernel 𝑐𝑖 is the detection confidence score Finally, the

heatmap undergoes adaptive intensity normalization:

𝐻𝑛𝑜𝑟𝑚(𝑥, 𝑦) = 𝑐𝑙𝑖𝑝 (
ℎ𝑡(𝑥,𝑦)

𝑚𝑎𝑥(ℎ𝑡)
, 𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥) (8)

Where:

• 𝜏𝑚𝑖𝑛 0.2 is the minimum intensity threshold

• 𝜏𝑚𝑎𝑥 1.0 is maximum intensity threshold

• 𝑐𝑙𝑖𝑝(𝑥, 𝑎, 𝑏) clamps the value 𝑥 between a and b

This normalized heatmap provides a balanced visualization where the intensity reflects both current

detections and historical activities while maintaining a clear distinction between active and inactive

regions.

5. Testing Evaluation

The evaluation of ADAM's algorithm encompassed a comprehensive comparative analysis against

traditional heatmap visualization methods when integrated with YOLOv8, examining its

performance across two distinct experimental scenarios: detection with limited objects and

detection with multiple objects. This comparative approach was strategically designed to assess

ADAM's adaptive capabilities and limitations under varying object density conditions, utilizing

both a custom dataset comprising 5,000 labelled images for smoking activity detection with limited

objects (specifically two people) from top-down views [31]. and the COCO dataset with YOLOv8n

for multiple object detection scenarios [32]. This methodologically rigorous dual-dataset approach

facilitated a thorough evaluation of the system's performance across different object densities,

enabling the identification of optimal operating conditions and a systematic understanding of system

limitations, thereby providing a comprehensive assessment of ADAM's practical applicability in

diverse detection scenarios. Furthermore, Testing was performed on an NVIDIA RTX 3060 12GB,

chosen for its high-performance capabilities to evaluate ADAM's real-time processing efficiency

and scalability under diverse scenarios.

6. Performance Metric

To comprehensively evaluate ADAM’s adaptive heatmap performance compared to traditional

heatmap methods, we were used several key metrics were used, in the table 1. These metrics

collectively provide a robust framework for analyzing ADAM’s performance, highlighting its

adaptability and visualization quality.
TABLE 1.

PERFORMANCE METRIC VARIABLE

Metric Description

Processing Time Measures the average time per frame to assess real-time performance.

Temporal Consistency Evaluates the stability of heatmap transitions across consecutive frames.

Memory Usage Analyzes average and peak memory consumption during heatmap generation.

Spatial Adaptation Tests the system’s ability to dynamically adjust to varying object sizes.

Heatmap Uniformity Evaluates the evenness of intensity distribution in the heatmap.

Gradient Smoothness Measures the clarity of intensity transitions within the heatmap.

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

302

III. RESULTS AND DISCUSSION

This section presents the experimental results of ADAM and analyzes its performance compared to

traditional heatmap methods. The evaluation focuses on processing efficiency, visualization quality,

and the effectiveness of YOLOv8 integration. Through comprehensive testing across different

scenarios and datasets, we demonstrate ADAM's capabilities in real-time object detection

visualization. Two distinct test scenarios were conducted to evaluate ADAM's performance: a

limited-object scenario focusing on specific activity detection and a multiple-object scenario in

crowded environments. These contrasting conditions allow us to assess both the algorithm's

adaptability and its performance boundaries in real-world applications.

1. Visual Analysis and Detection Results

As shown in figure 2, in crowded scenes, ADAM demonstrates both its strengths and limitations.

A significant performance impact is observed as the frame rate drops from 25 FPS to 4 FPS,

representing an 84% decrease in processing speed. This substantial reduction is primarily attributed

to the increased computational load when YOLOv8 processes multiple objects while

simultaneously generating adaptive heatmaps for each detection.

Figure 2. Sequential visualization of ADAM's ghost effect elimination: (a) initial adaptive heatmap generation based

on current detections, (b) transition phase showing active clearing of previous detections, and (c) generation of new

heatmap without residual traces, demonstrating efficient temporal adaptation in crowded scenes.

Figure 3. ADAM's performance in limited-object smoking activity detection scenario: (a) initial detection of smoking

activity with adaptive heatmap generation in the region of interest (highlighted in red box), (b) transition phase showing

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

303

temporal adaptation as the scene changes, and (c) generation of new activity heatmap with consistent performance at

21.6 FPS.

The red boxes indicate areas where objects have left the detection frame, demonstrating how their

corresponding heatmap signatures immediately disappear without leaving residual traces. This

clean transition between frames highlights ADAM's ability to eliminate ghost effects while

maintaining visualization clarity in multi-object scenarios. Furthermore, In the smoking detection

case in Figure 2, ADAM demonstrates robust performance in tracking specific activities with

limited objects. The sequence shows consistent FPS rates of 21.6, indicating stable real-time

performance. The adaptive heatmap effectively focuses on the smoking activity area, with the red

boxes highlighting the regions of interest where the activity is detected. The temporal adaptation is

particularly noticeable as the heatmap smoothly updates to reflect changes in smoking behavior

without leaving any residual heat signatures from previous detections.

2. Performance Analysis

As shown on table 2, our comprehensive evaluation of ADAM's performance across different

scenarios reveals interesting patterns in processing efficiency and resource utilization. In multi-

object crowded scenarios, the system demonstrates an average processing time of 0.0232 seconds

per frame, while in limited-object scenarios smoking detection, it achieves significantly faster

processing at 0.0006 seconds per frame. This 97% reduction in processing time for limited-object

scenarios illustrates ADAM's efficient scaling based on scene complexity. Furthermore, temporal

consistency remains robust across both scenarios, with crowded scenes achieving 0.8990 and

limited-object scenes slightly higher at 0.9015. This minimal variation (less than 0.3%) indicates

that ADAM maintains reliable temporal adaptation regardless of scene complexity. Memory usage

remains constant at 1,843,200 units across both scenarios, suggesting efficient memory

management and optimal resource allocation. Notably, spatial adaptation shows contrasting

behaviour between scenarios.
TABLE 2.

ADAM PERFORMANCE METRIC

Metric Multi Object Limited Object

Processing Time 0.0232 0.0006

Temporal Consistency 0.8990 0.9015

Memory Usage 1,843,200 1,843,200

Spatial Adaptation -0.4736 0.1412

Heatmap Uniformity 0.2495 0.0000

Gradient Smoothness 0.9826 0.0000

Total Frames 1,109 1,800

However, based on Table 2, In crowded scenes, we observe a negative spatial adaptation

improvement of -0.4736, indicating increased computational challenges in managing multiple

adaptive kernels. However, in limited-object scenarios, the positive improvement of 0.1412

demonstrates ADAM's optimal performance when tracking specific activities. Heat distribution

metrics in crowded scenes show moderate uniformity (0.2495) with excellent gradient smoothness

(0.9826), contributing to visually coherent heatmap generation. The absence of these metrics in

limited-object scenarios (both at 0.0000) reflects the system's focused adaptation to specific

detection tasks.

3. Comparative Analysis with Traditional Heatmap

This section presents a comparative analysis between ADAM and traditional heatmap approaches

across different scenarios. To ensure a fair comparison, both methods were evaluated under

identical conditions using the same datasets and evaluation metrics.

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

304

TABLE 3.

TRADITIONAL HEATMAP PERFORMANCE METRIC

Metric Multi Object Limited Object

Processing Time 0.0220 0.0230

Temporal Consistency 0.9993 0.9982

Memory Usage 1,920,000 1,920,000

Spatial Adaptation N/A N/A

Heatmap Uniformity 0.1849 -1.2746

Gradient Smoothness 0.9710 0.9968

Based on Table 2 and 3, while traditional methods maintain consistent processing times

(~0.022s) regardless of scene complexity, ADAM shows adaptive processing with exceptional

performance in limited-object scenes (0.0006s) and comparable performance in crowded scenes

(0.0232s). Memory management analysis shows ADAM achieving 4% lower utilization across all

scenarios (1,843,200 vs 1,920,000 units). Furthermore, as shown in Figure 4, traditional heatmap

methods demonstrate a significant limitation in temporal adaptation. The visualization shows

prominent ghost effects where activity heat signatures persist long after subjects have moved,

creating large areas of residual heat that do not reflect current scene activities. While this results in

higher temporal consistency scores (0.99 vs 0.89), it actually represents a disadvantage in real-world

applications. ADAM, in contrast, shows better heat uniformity in crowded scenes (0.2495 vs

0.1849) with cleaner temporal transitions.

Figure 4. Comparison of heatmap generation between traditional and ADAM approaches in a smoking detection

scenario. The top image shows traditional heatmap with prominent ghost effects, where heat signatures persist and

spread across large areas even after subjects have moved.

A key distinction lies in spatial adaptation capabilities. Traditional implementations use fixed-size

Gaussian kernels, while ADAM employs dynamic kernel generation adapting to object dimensions.

This fundamental difference is reflected in the absence of spatial adaptation metrics in traditional

heatmaps and visually evident in the more focused, accurate heat distribution of ADAM compared

to the diffused patterns in traditional approaches. These findings show ADAM's advantages in

processing speed, memory efficiency, and adaptive capabilities, making it suitable for applications

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

305

requiring rapid response and clean visualization. Traditional approaches remain preferable where

consistent processing speed is prioritized over adaptive optimization.

In addition, the experimental results reveal important insights about adaptive heatmap

implementations in real-time object detection systems. The significant performance variation

between simple and complex scenes (0.0006s vs 0.0232s) indicates that scene complexity remains

a critical factor in real-time processing capabilities. This finding highlights the importance of

context-aware optimization in visual analytics systems. While the 4% improvement in memory

efficiency might appear modest, it demonstrates that adaptive approaches can maintain lower

resource requirements even while providing more sophisticated functionality. This efficiency

becomes particularly significant in extended operations or resource-constrained environments,

where traditional methods' higher memory usage could limit deployment options.

The trade-off between temporal consistency and ghost effect elimination represents a fundamental

challenge in heatmap visualization. Traditional methods' higher temporal consistency (0.99)

actually impedes accurate activity representation, while ADAM's lower score (0.89) reflects its

success in balancing persistence with adaptability. This finding challenges the conventional

assumption that higher temporal consistency necessarily indicates better performance. These

findings suggest that adaptive approaches offer tangible advantages in real-world applications,

particularly where accurate temporal representation and efficient resource utilization are prioritized

over raw processing speed. However, the performance degradation in complex scenes indicates that

further optimization may be necessary for high-density scenarios.

IV. CONCLUSIONS

This paper presents ADAM, a novel approach for adaptive heatmap visualization in real-time object

detection. Through experimental evaluation, we have demonstrated significant improvements in

processing speed for simple scenes and consistent memory efficiency across different scenarios,

while successfully eliminating ghost effects that plague traditional methods. Our results show that

adaptive approaches can effectively balance performance and visualization quality, achieving a 97%

improvement in processing speed for simple scenes while maintaining comparable performance in

complex scenarios. The trade-off between temporal consistency and accurate activity representation

highlights the importance of context-aware adaptation in visual analytics systems. Future research

should focus on three key areas: optimization for complex scenes, integration of machine learning

approaches for kernel adaptation, and implementation of parallel processing techniques. First,

optimization strategies for complex scenes could enhance performance without sacrificing

adaptation quality. Second, the integration of machine learning approaches might enable more

intelligent kernel adaptation mechanisms. Finally, investigating parallel processing techniques

could help maintain real-time performance in high-density scenarios while preserving the benefits

of adaptive visualization.

REFERENCES

[1] A. S. Rao et al., “Real-time monitoring of construction sites: Sensors, methods, and applications,”

Autom Constr, vol. 136, p. 104099, Apr. 2022, doi: 10.1016/J.AUTCON.2021.104099.

[2] C. Linse, H. Alshazly, and T. Martinetz, “A walk in the black-box: 3D visualization of large neural

networks in virtual reality,” Neural Comput Appl, vol. 34, no. 23, pp. 21237–21252, Dec. 2022, doi:

10.1007/S00521-022-07608-4/TABLES/8.

[3] K. Bayoudh, R. Knani, F. Hamdaoui, and A. Mtibaa, “A survey on deep multimodal learning for

computer vision: advances, trends, applications, and datasets,” The Visual Computer 2021 38:8, vol.

38, no. 8, pp. 2939–2970, Jun. 2021, doi: 10.1007/S00371-021-02166-7.

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

306

[4] X. Wang, L. Zhu, Y. Wu, and Y. Yang, “Symbiotic Attention for Egocentric Action Recognition With

Object-Centric Alignment,” IEEE Trans Pattern Anal Mach Intell, vol. 45, no. 6, pp. 6605–6617, Jun.

2023, doi: 10.1109/TPAMI.2020.3015894.

[5] F. Li, Z. Yang, and Y. Gui, “SES-YOLOv8v5: small object graphics detection and visualization

applications,” Visual Computer, pp. 1–14, Aug. 2024, doi: 10.1007/S00371-024-03591-

0/FIGURES/10.

[6] S. Chen, J. Yu, and S. Wang, “One-dimensional convolutional neural network-based active feature

extraction for fault detection and diagnosis of industrial processes and its understanding via

visualization,” ISA Trans, vol. 122, pp. 424–443, Mar. 2022, doi: 10.1016/J.ISATRA.2021.04.042.

[7] E. Kim, D. Gopinath, C. S. Păsăreanu, and S. A. Seshia, “A programmatic and semantic approach to

explaining and debugging neural network based object detectors,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pp. 11125–11134, 2020, doi:

10.1109/CVPR42600.2020.01114.

[8] J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Deep learning in computer vision: A critical review of

emerging techniques and application scenarios,” Machine Learning with Applications, vol. 6, p. 100134,

Dec. 2021, doi: 10.1016/J.MLWA.2021.100134.

[9] X. Li et al., “Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond,”

Knowl Inf Syst, vol. 64, no. 12, pp. 3197–3234, Dec. 2022, doi: 10.1007/S10115-022-01756-

8/TABLES/3.

[10] S. G. Verma, S. Maurya, H. Pant, A. K. Yadav, S. Thomas Varghese, and R. Garg, “YOLOv8:

Redefining Real-Time Object Detection Accuracy and Efficiency,” 2024 IEEE 3rd World Conference

on Applied Intelligence and Computing (AIC), pp. 1123–1129, Jul. 2024, doi:

10.1109/AIC61668.2024.10731055.

[11] A. Karasmanoglou, M. Antonakakis, and M. Zervakis, “Heatmap-based Explanation of YOLOv5

Object Detection with Layer-wise Relevance Propagation,” IST 2022 - IEEE International Conference

on Imaging Systems and Techniques, Proceedings, 2022, doi: 10.1109/IST55454.2022.9827744.

[12] S. Phatangare, S. Kate, D. Khandelwal, A. Khandetod, and A. Kharade, “Real-time Human Activity

Detection using YOLOv7,” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics

and Cloud), I-SMAC 2023 - Proceedings, pp. 1069–1076, 2023, doi: 10.1109/I-

SMAC58438.2023.10290168.

[13] T. Yamauchi and M. Ishikawa, “SPATIAL SENSITIVE GRAD-CAM: VISUAL EXPLANATIONS

FOR OBJECT DETECTION BY INCORPORATING SPATIAL SENSITIVITY,” Proceedings -

International Conference on Image Processing, ICIP, pp. 256–260, 2022, doi:

10.1109/ICIP46576.2022.9897350.

[14] R. Wu, X. Xiao, G. Hu, H. Zhao, H. Zhang, and Y. Peng, “DetOH: An Anchor-Free Object Detector

with Only Heatmaps,” Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14177 LNAI, pp. 152–167, 2023, doi:

10.1007/978-3-031-46664-9_11/TABLES/4.

[15] S. Zhao, L. Zhou, W. Wang, D. Cai, T. L. Lam, and Y. Xu, “Toward Better Accuracy-Efficiency Trade-

Offs: Divide and Co-Training,” IEEE Transactions on Image Processing, vol. 31, pp. 5869–5880, 2022,

doi: 10.1109/TIP.2022.3201602.

[16] W. E. Villegas, S. Sanchez-Viteri, and S. Lujan-Mora, “Real-Time Recognition and Tracking in Urban

Spaces Through Deep Learning: A Case Study,” IEEE Access, vol. 12, pp. 95599–95612, 2024, doi:

10.1109/ACCESS.2024.3426295.

[17] X. Hao, J. Tian, H. Ding, K. Zhao, and M. Gen, “An enhanced two phase estimation of distribution

algorithm for solving scheduling problem,” https://doi.org/10.1080/17509653.2022.2085205, pp. 1–8,

Jun. 2022, doi: 10.1080/17509653.2022.2085205.

[18] Y. Qi, H. Zhang, and J. Liu, “More accurate heatmap generation method for human pose estimation,”

Multimed Syst, vol. 30, no. 4, pp. 1–11, Aug. 2024, doi: 10.1007/S00530-024-01390-0/TABLES/5.

[19] S. Dubey and M. Dixit, “A comprehensive survey on human pose estimation approaches,” Multimedia

Systems 2022 29:1, vol. 29, no. 1, pp. 167–195, Aug. 2022, doi: 10.1007/S00530-022-00980-0.

[20] P. Chen, Q. Li, S. Biaz, T. Bui, and A. Nguyen, “gScoreCAM: What Objects Is CLIP Looking At?,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025 ISSN : 2527-9866

307

Lecture Notes in Bioinformatics), vol. 13844 LNCS, pp. 588–604, 2023, doi: 10.1007/978-3-031-

26316-3_35/FIGURES/4.

[21] Z. Xu, E. Hrustic, and D. Vivet, “CenterNet Heatmap Propagation for Real-Time Video Object

Detection,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 12370 LNCS, pp. 220–234, 2020, doi:

10.1007/978-3-030-58595-2_14/TABLES/5.

[22] Y. Qi, H. Zhang, and J. Liu, “More accurate heatmap generation method for human pose estimation,”

Multimed Syst, vol. 30, no. 4, pp. 1–11, Aug. 2024, doi: 10.1007/S00530-024-01390-0/TABLES/5.

[23] L. Yan, Y. Qin, and J. Chen, “Scale-Balanced Real-Time Object Detection With Varying Input-Image

Resolution,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 1, pp. 242–

256, Jan. 2023, doi: 10.1109/TCSVT.2022.3198329.

[24] Z. Xu, E. Hrustic, and D. Vivet, “CenterNet Heatmap Propagation for Real-Time Video Object

Detection,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 12370 LNCS, pp. 220–234, 2020, doi:

10.1007/978-3-030-58595-2_14/TABLES/5.

[25] C. Chen, G. Wang, C. Peng, Y. Fang, D. Zhang, and H. Qin, “Exploring Rich and Efficient Spatial

Temporal Interactions for Real-Time Video Salient Object Detection,” IEEE Transactions on Image

Processing, vol. 30, pp. 3995–4007, 2021, doi: 10.1109/TIP.2021.3068644.

[26] H. F. Ates, A. Siddique, and B. Gunturk, “HMRN: regression network to detect and track small objects

in wide-area motion imagery,” Signal Image Video Process, vol. 17, no. 1, pp. 39–45, Feb. 2023, doi:

10.1007/S11760-022-02201-7/TABLES/5.

[27] R. Dong, S. Yin, L. Jiao, J. An, and W. Wu, “ASIPNet: Orientation-Aware Learning Object Detection

for Remote Sensing Images,” Remote Sensing 2024, Vol. 16, Page 2992, vol. 16, no. 16, p. 2992, Aug.

2024, doi: 10.3390/RS16162992.

[28] J. Mu, Q. Su, X. Wang, W. Liang, S. Xu, and K. Wan, “A small object detection architecture with

concatenated detection heads and multi-head mixed self-attention mechanism,” J Real-time Image

Process, vol. 21, no. 6, pp. 1–15, Dec. 2024, doi: 10.1007/S11554-024-01562-1/TABLES/14.

[29] H. F. Ates, A. Siddique, and B. Gunturk, “HMRN: regression network to detect and track small objects

in wide-area motion imagery,” Signal Image Video Process, vol. 17, no. 1, pp. 39–45, Feb. 2023, doi:

10.1007/S11760-022-02201-7/TABLES/5.

[30] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Crespo, “Memory resource management for

real-time systems,” Proceedings - Euromicro Conference on Real-Time Systems, pp. 201–210, 2007,

doi: 10.1109/ECRTS.2007.18.

[31] Anggi Andriyadi, “Smoking Detection - v1 2024-08-17 11:52pm,” Roboflow. Accessed: Nov. 22, 2024.

[Online]. Available: https://universe.roboflow.com/husky-wrfw6/smoking-detection-3i0zg-

kcrv5/dataset/1

[32] T. Y. Lin et al., “Microsoft COCO: Common Objects in Context,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

8693 LNCS, no. PART 5, pp. 740–755, May 2014, doi: 10.1007/978-3-319-10602-1_48.

ACKNOLOWGDMENT

This work was sponsored by Institut Informatika dan Bisnis Darmajaya (IIB Darmajaya) under

grant No. SK.0536/DMJ/REK/LPPM.X.2024

