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Abstract – Adaptive Dynamic Activity Mapping presents a novel approach for real-time heatmap 

visualization in object detection systems. Traditional heatmap methods often suffer from ghost effects and 

fixed kernel sizes, limiting their effectiveness in dynamic scenes. This paper introduces an adaptive approach 

that integrates with YOLOv8 object detection to provide more accurate and responsive visualization. 

Performance evaluation across different scenarios demonstrates significant improvements, achieving 97% 

faster processing in simple scenes while maintaining efficient memory utilization with a 4% reduction 

compared to traditional methods. While traditional approaches show higher temporal consistency (0.99 vs 

0.89), our method eliminates ghost effects and provides better heat uniformity in crowded scenes (0.2495 vs 

0.1849). The system employs dynamic kernel generation that adapts to object dimensions, addressing a 

fundamental limitation of fixed-size kernels in traditional implementations. Experimental results validate the 

effectiveness of our approach in balancing processing efficiency, visualization quality, and resource 

utilization, particularly in scenarios requiring accurate temporal representation and clean visualization of 

object activities. 
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I. INTRODUCTION 

Object detection is one of computer vision's most critical and essential tasks, aimed at searching for 

and recognizing objects in images [1]. While object detection provides the foundational analysis, 

visualization transforms this data into interpretable information that can hide complex details, 

highlight areas of interest, and provide varying degrees of abstraction [2] [3]. This symbiotic 

relationship between object detection and visualization [4],[5]. enhances human perception of 

detection results, facilitates understanding of model behavior, and enables effective system 

debugging [6] [7]. Consequently, modern visualization technique research has focused on detecting 

images [8]. Many methods have been published to reveal deep learning mechanisms, but few 

provide concrete visual cues or expose internal decisions [9]. Therefore, there is a growing need for 

advanced visualization techniques to provide real-time, adaptive, and efficient representation of 

object detection results. Among various object detection algorithms, YOLOv8 (You Only Look 

Once v8) has emerged as a leading framework for real-time applications due to its efficiency and 

accuracy in handling diverse detection tasks [10]. By integrating YOLOv8 with heatmap 

visualization, developers can achieve more explainable and interactive object detection 

systems[11][12], It is because, heatmaps are particularly effective for representing spatial data in 

object detection architectures, providing users with improved result interpretation capabilities. 

However, current heatmap visualization techniques face several critical challenges that limit their 

effectiveness [13]. The primary challenge lies in fixed kernel limitations that prevent adaptation to 

varying object sizes, coupled with substantial processing overhead in real-time systems. These 

issues are further compounded by high memory consumption that significantly impacts overall 

performance [14]. Additionally, developers face considerable difficulty in balancing visualization 

quality with real-time processing requirements [15] These multifaceted challenges underscore the 
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pressing need for advanced solutions that can meet critical industry requirements, including real-

time processing capability, adaptive visualization mechanisms, and resource-efficient 

implementation [16]. These requirements are essential for developing practical and effective 

visualization systems that can operate in real-world conditions. 

 

1. Heatmap Visualization 

Heatmap displays can be used to interpret object detection since colour encoding best represents 

spatial data [17]. They simplify complex information and allow for easy observation of patterns 

[18]. Visualizations are essential in machine learning and intense learning applications [19]. 

Visualization and deep learning together provide a comprehensive data analysis [20]. Object 

detection can classify images and detect the object bounds [21]. Heatmaps provide visual clues for 

spatial positioning and are commonly used in activity recognition and human pose estimation [22]. 

 

2. Limitation of Traditional Heatmap 

The traditional heatmap techniques used for object detection have limitations in handling scale and 

size variations [23]. The heatmaps cannot be scaled with small details and are unsuitable for actual 

video feeds [24]. It also cannot map temporal information or operate on human behavior datasets 

[25]. The heatmap generation process requires intensive computational resources, while traditional 

background models fail to perform effectively in dynamic environments [26]. Traditional 

previously used methods are not location or climate-specific and present difficulties in real-time 

object identification [27]. In addition, in the case of object scales, the traditional heatmap 

visualization for object detection poses a constraint in scaling and is thus not accurate [28]. Static 

decay rates can cause ghosting or objects vanishing at a very high speed, thus complicating object 

tracking [29]. High memory usage and computation needs are the main challenges to real-time 

utilization. It may also be noted that the inability to change stance decreases detection efficiency 

when the conditions constantly change, leading to missed detections [29]. Some of the problems 

with the visualization quality, for example, blurring, complicate the interpretation of the heatmap 

[30]. Enhancement is required to create more accurate, up-to-date, dynamic spatial data models. 

 

3. Propose Method 

Traditional heatmap techniques face significant limitations in handling scale and size variations. To 

address these challenges, we introduce Adaptive Dynamic Activity Mapping (ADAM), which 

implements adaptive kernel generation to handle varying object sizes while maintaining efficient 

performance. First, ADAM uses adaptive kernel generation, which adapts to object sizes and 

replaces static kernel methods. Secondly, ADAM combines with YOLO88 to conduct accurate 

object detection, especially in the case of different object scales.  Third, dynamic decay rates that 

adapt to area activity levels are used to implement temporal management in ADAM. It removes the 

typical 'ghost effect' of traditional systems while keeping essential temporal information in less 

active regions. ADAM optimises for accurate real-time performance with high-quality visualization 

by minimising memory usage and maximising processing efficiency.  
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II.  SIGNIFICANCE OF STUDY 

This section presents the methodology of ADAM, our proposed solution for real-time heatmap 

visualization in object detection.  

 

1. ADAM Flowchart 

As shown in Figure 1, YOLOv8 is used as the object detection engine at the input stage to produce 

the bounding boxes and confidence scores, which are then used by ADAM's core components to 

produce heatmaps.  

 
Figure 1. ADAM’s Flowchart 

The interaction between these components forms a streamlined pipeline where each module 

performs specialized tasks, starting from object detection through YOLOv8 to the final heatmap 
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visualization. The following sections detail each component's role and their mathematical 

foundations, beginning with the YOLOv8 Detection Component.  

 

2. YOLOv8 Detection Company 

YOLOv8 is the primary input module in ADAM, providing robust object detection capabilities with 

three essential parameters: intersection over union (IoU) threshold for Non-Maximum Suppression 

(NMS), confidence threshold, and model weights. NMS eliminates redundant detections by keeping 

the highest confidence detection when overlapping areas. BaseDetector standardizes the detection 

interface and ensures each video frame is processed consistent mathematical framework of the 

detection process is defined as: 

 

𝐷(𝑓) = {(𝑏𝑖 , 𝑐𝑖, 𝐼𝑖)|𝑖 = 1, … … , 𝑛}                     (1) 

 

Where: 

 

• 𝐷(𝑓) represents the detection output for frame 𝑓 

• 𝑏𝑖 = (𝑥1, 𝑦1, 𝑥2, 𝑦2) is bounding box coordinates 

• 𝐶𝑖 is the confidence score of the dection 

• 𝐼𝑖 is the class label 

• 𝑛 is the number of detected objects in the frame 

Object filtering is applied through two threshold parameters: 

 

𝑃(𝑏𝑖) =  {
1,   𝑖𝑓𝑐𝑖 ≥ 𝜏𝑐 𝑎𝑛𝑑 𝐼𝑜𝑈 < 𝜏𝑖𝑜𝑢

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   (2) 

 

Where:  

 

• 𝜏𝑐  = 0.25 is the confidence threshold 

• 𝜏𝑖𝑜𝑢 = 0.45 for NMS threshold 

• 𝑃(𝑏𝑖) 1 for retained, 0 for discarded detection 

These filters help to feed only the high-confidence detections to the Adaptive Heatmap component, 

improving accuracy and computational complexity. Moreover, the detector predicts the coordinates 

of boxes at the spatial level, the confidence score, and the class label, which are passed to the Kernel 

Generator in the following pipeline. 

 

3. Kernel Generation Component 

The Kernel Generator is an important module that synthesizes adequate Gaussian kernels in 

accordance with the sizes of identified objects. Conventional approaches employ kernels of fixed 

size, while in ADAM, kernel size changes according to the spatial dimensions of the detected 

objects, providing a more accurate depiction of activity distribution. The adaptive Gaussian kernel 

is generated using the following equation: 

 

𝐾(𝑥, 𝑦)  =  
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
(𝑥−𝜇𝑥)2+(𝑦 − 𝜇𝑦)2

2𝜎2 )                          (3) 
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Where: 

• (𝑥, 𝑦) represents the pixel coordinates. 

• (𝜇𝑥. 𝜇𝑦) is the center of the detected object. 

• 𝜎 is the adaptive standard deviation. 

The adaptive standard deviation σ is calculated based on object size: 

 

𝜎 =  𝑚𝑎𝑥 (𝑤, ℎ)  ×  𝛼                   (4)  

 

Where: 

• 𝑤 is the width of the detected object 

• ℎ is the height of the detected object 

• 𝛼 =  0.15 is the spatial sigma factor 

The generated kernel is then normalized to ensure the sum of all kernel values equals one: 

 

𝐾𝑛𝑜𝑟𝑚(𝑥, 𝑦)  =  
𝑘(𝑥,𝑦)

∑ 𝐾(𝑥,𝑦)𝑥,𝑦
                  (5) 

 

Where: 

• 𝐾𝑛𝑜𝑟𝑚(𝑥, 𝑦) is the normalized kernel  

• 𝐾(𝑥, 𝑦) is the original kernel 

• ∑ 𝐾(𝑥, 𝑦)𝑥,𝑦  is the sum of all kernel values 

The normalized kernel is then passed to the Adaptive Heatmap Component, which is responsible 

for managing three key aspects: temporal decay for historical data preservation, activity map 

updates for current detections, and intensity normalization for balanced visualization. 

 

4. Adaptive Heatmap Component 

The Adaptive Heatmap Component manages the temporal evolution and intensity distribution of 

the activity map through three main processes: temporal decay, activity update, and intensity 

normalization. For each frame, the heatmap and activity map undergo temporal decay to maintain 

historical context while emphasizing recent activities. The temporal decay process is defined as: 

 

𝐻𝑡 =  𝐻𝑡−1  ×  𝛽                    (6) 

 

Where: 

 

• 𝐻𝑡 is the heatmap at current time 𝑡 

• 𝐻𝑡−1 is the heatmap from previous frame 

• 𝛽 =  0.95 is the temporal decay factor 

For each new detection, the heatmap is updated with the confidence-weighted kernel: 

 

𝐻𝑡(𝑥, 𝑦)  =  𝐻𝑡(𝑥, 𝑦)  +  𝐾𝑛𝑜𝑟𝑚(𝑥, 𝑦) × 𝐶𝑖                         (7) 
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Where 𝐾𝑛𝑜𝑟𝑚(𝑥, 𝑦) is the normalized kernel 𝑐𝑖 is the detection confidence score Finally, the 

heatmap undergoes adaptive intensity normalization: 

 

𝐻𝑛𝑜𝑟𝑚(𝑥, 𝑦)  =  𝑐𝑙𝑖𝑝 (
ℎ𝑡(𝑥,𝑦)

𝑚𝑎𝑥(ℎ𝑡)
, 𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥)                    (8) 

  

Where: 

• 𝜏𝑚𝑖𝑛 0.2 is the minimum intensity threshold 

• 𝜏𝑚𝑎𝑥 1.0   is maximum intensity threshold 

• 𝑐𝑙𝑖𝑝(𝑥, 𝑎, 𝑏) clamps the value 𝑥 between a and b 

This normalized heatmap provides a balanced visualization where the intensity reflects both current 

detections and historical activities while maintaining a clear distinction between active and inactive 

regions. 

 

5. Testing Evaluation 

The evaluation of ADAM's algorithm encompassed a comprehensive comparative analysis against 

traditional heatmap visualization methods when integrated with YOLOv8, examining its 

performance across two distinct experimental scenarios: detection with limited objects and 

detection with multiple objects. This comparative approach was strategically designed to assess 

ADAM's adaptive capabilities and limitations under varying object density conditions, utilizing 

both a custom dataset comprising 5,000 labelled images for smoking activity detection with limited 

objects (specifically two people) from top-down views [31]. and the COCO dataset with YOLOv8n 

for multiple object detection scenarios [32]. This methodologically rigorous dual-dataset approach 

facilitated a thorough evaluation of the system's performance across different object densities, 

enabling the identification of optimal operating conditions and a systematic understanding of system 

limitations, thereby providing a comprehensive assessment of ADAM's practical applicability in 

diverse detection scenarios. Furthermore, Testing was performed on an NVIDIA RTX 3060 12GB, 

chosen for its high-performance capabilities to evaluate ADAM's real-time processing efficiency 

and scalability under diverse scenarios.  

 

6. Performance Metric 

To comprehensively evaluate ADAM’s adaptive heatmap performance compared to traditional 

heatmap methods, we were used several key metrics were used, in the table 1. These metrics 

collectively provide a robust framework for analyzing ADAM’s performance, highlighting its 

adaptability and visualization quality. 
TABLE 1.  

PERFORMANCE METRIC VARIABLE 

Metric Description 

Processing Time Measures the average time per frame to assess real-time performance. 

Temporal Consistency Evaluates the stability of heatmap transitions across consecutive frames. 

Memory Usage Analyzes average and peak memory consumption during heatmap generation. 

Spatial Adaptation Tests the system’s ability to dynamically adjust to varying object sizes. 

Heatmap Uniformity Evaluates the evenness of intensity distribution in the heatmap. 

Gradient Smoothness Measures the clarity of intensity transitions within the heatmap. 
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III. RESULTS AND DISCUSSION 

This section presents the experimental results of ADAM and analyzes its performance compared to 

traditional heatmap methods. The evaluation focuses on processing efficiency, visualization quality, 

and the effectiveness of YOLOv8 integration. Through comprehensive testing across different 

scenarios and datasets, we demonstrate ADAM's capabilities in real-time object detection 

visualization. Two distinct test scenarios were conducted to evaluate ADAM's performance: a 

limited-object scenario focusing on specific activity detection and a multiple-object scenario in 

crowded environments. These contrasting conditions allow us to assess both the algorithm's 

adaptability and its performance boundaries in real-world applications.  

1. Visual Analysis and Detection Results 

As shown in figure 2, in crowded scenes, ADAM demonstrates both its strengths and limitations. 

A significant performance impact is observed as the frame rate drops from 25 FPS to 4 FPS, 

representing an 84% decrease in processing speed. This substantial reduction is primarily attributed 

to the increased computational load when YOLOv8 processes multiple objects while 

simultaneously generating adaptive heatmaps for each detection.  

 

 

Figure 2. Sequential visualization of ADAM's ghost effect elimination: (a) initial adaptive heatmap generation based 

on current detections, (b) transition phase showing active clearing of previous detections, and (c) generation of new 

heatmap without residual traces, demonstrating efficient temporal adaptation in crowded scenes. 
 

 
Figure 3. ADAM's performance in limited-object smoking activity detection scenario: (a) initial detection of smoking 

activity with adaptive heatmap generation in the region of interest (highlighted in red box), (b) transition phase showing 
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temporal adaptation as the scene changes, and (c) generation of new activity heatmap with consistent performance at 

21.6 FPS. 

The red boxes indicate areas where objects have left the detection frame, demonstrating how their 

corresponding heatmap signatures immediately disappear without leaving residual traces. This 

clean transition between frames highlights ADAM's ability to eliminate ghost effects while 

maintaining visualization clarity in multi-object scenarios. Furthermore, In the smoking detection 

case in Figure 2, ADAM demonstrates robust performance in tracking specific activities with 

limited objects. The sequence shows consistent FPS rates of 21.6, indicating stable real-time 

performance.  The adaptive heatmap effectively focuses on the smoking activity area, with the red 

boxes highlighting the regions of interest where the activity is detected. The temporal adaptation is 

particularly noticeable as the heatmap smoothly updates to reflect changes in smoking behavior 

without leaving any residual heat signatures from previous detections.  

2. Performance Analysis 

As shown on table 2, our comprehensive evaluation of ADAM's performance across different 

scenarios reveals interesting patterns in processing efficiency and resource utilization. In multi-

object crowded scenarios, the system demonstrates an average processing time of 0.0232 seconds 

per frame, while in limited-object scenarios smoking detection, it achieves significantly faster 

processing at 0.0006 seconds per frame. This 97% reduction in processing time for limited-object 

scenarios illustrates ADAM's efficient scaling based on scene complexity. Furthermore, temporal 

consistency remains robust across both scenarios, with crowded scenes achieving 0.8990 and 

limited-object scenes slightly higher at 0.9015. This minimal variation (less than 0.3%) indicates 

that ADAM maintains reliable temporal adaptation regardless of scene complexity. Memory usage 

remains constant at 1,843,200 units across both scenarios, suggesting efficient memory 

management and optimal resource allocation. Notably, spatial adaptation shows contrasting 

behaviour between scenarios. 
TABLE 2.  

ADAM PERFORMANCE METRIC  

Metric Multi Object Limited Object 

Processing Time 0.0232 0.0006 

Temporal Consistency 0.8990 0.9015 

Memory Usage 1,843,200 1,843,200 

Spatial Adaptation -0.4736 0.1412 

Heatmap Uniformity 0.2495 0.0000 

Gradient Smoothness 0.9826 0.0000 

Total Frames 1,109 1,800 

 

However, based on Table 2, In crowded scenes, we observe a negative spatial adaptation 

improvement of -0.4736, indicating increased computational challenges in managing multiple 

adaptive kernels. However, in limited-object scenarios, the positive improvement of 0.1412 

demonstrates ADAM's optimal performance when tracking specific activities. Heat distribution 

metrics in crowded scenes show moderate uniformity (0.2495) with excellent gradient smoothness 

(0.9826), contributing to visually coherent heatmap generation. The absence of these metrics in 

limited-object scenarios (both at 0.0000) reflects the system's focused adaptation to specific 

detection tasks. 

3. Comparative Analysis with Traditional Heatmap 

This section presents a comparative analysis between ADAM and traditional heatmap approaches 

across different scenarios. To ensure a fair comparison, both methods were evaluated under 

identical conditions using the same datasets and evaluation metrics. 
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TABLE 3.  

TRADITIONAL HEATMAP PERFORMANCE METRIC  

Metric Multi Object Limited Object 

Processing Time 0.0220 0.0230 

Temporal Consistency 0.9993 0.9982 

Memory Usage 1,920,000 1,920,000 

Spatial Adaptation N/A N/A 

Heatmap Uniformity 0.1849 -1.2746 

Gradient Smoothness 0.9710 0.9968 

Based on Table 2 and 3, while traditional methods maintain consistent processing times 

(~0.022s) regardless of scene complexity, ADAM shows adaptive processing with exceptional 

performance in limited-object scenes (0.0006s) and comparable performance in crowded scenes 

(0.0232s). Memory management analysis shows ADAM achieving 4% lower utilization across all 

scenarios (1,843,200 vs 1,920,000 units). Furthermore, as shown in Figure 4, traditional heatmap 

methods demonstrate a significant limitation in temporal adaptation. The visualization shows 

prominent ghost effects where activity heat signatures persist long after subjects have moved, 

creating large areas of residual heat that do not reflect current scene activities. While this results in 

higher temporal consistency scores (0.99 vs 0.89), it actually represents a disadvantage in real-world 

applications. ADAM, in contrast, shows better heat uniformity in crowded scenes (0.2495 vs 

0.1849) with cleaner temporal transitions. 

 

Figure 4. Comparison of heatmap generation between traditional and ADAM approaches in a smoking detection 

scenario. The top image shows traditional heatmap with prominent ghost effects, where heat signatures persist and 

spread across large areas even after subjects have moved. 

A key distinction lies in spatial adaptation capabilities. Traditional implementations use fixed-size 

Gaussian kernels, while ADAM employs dynamic kernel generation adapting to object dimensions. 

This fundamental difference is reflected in the absence of spatial adaptation metrics in traditional 

heatmaps and visually evident in the more focused, accurate heat distribution of ADAM compared 

to the diffused patterns in traditional approaches. These findings show ADAM's advantages in 

processing speed, memory efficiency, and adaptive capabilities, making it suitable for applications 
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requiring rapid response and clean visualization. Traditional approaches remain preferable where 

consistent processing speed is prioritized over adaptive optimization.   

In addition, the experimental results reveal important insights about adaptive heatmap 

implementations in real-time object detection systems. The significant performance variation 

between simple and complex scenes (0.0006s vs 0.0232s) indicates that scene complexity remains 

a critical factor in real-time processing capabilities. This finding highlights the importance of 

context-aware optimization in visual analytics systems. While the 4% improvement in memory 

efficiency might appear modest, it demonstrates that adaptive approaches can maintain lower 

resource requirements even while providing more sophisticated functionality. This efficiency 

becomes particularly significant in extended operations or resource-constrained environments, 

where traditional methods' higher memory usage could limit deployment options. 

The trade-off between temporal consistency and ghost effect elimination represents a fundamental 

challenge in heatmap visualization. Traditional methods' higher temporal consistency (0.99) 

actually impedes accurate activity representation, while ADAM's lower score (0.89) reflects its 

success in balancing persistence with adaptability. This finding challenges the conventional 

assumption that higher temporal consistency necessarily indicates better performance. These 

findings suggest that adaptive approaches offer tangible advantages in real-world applications, 

particularly where accurate temporal representation and efficient resource utilization are prioritized 

over raw processing speed. However, the performance degradation in complex scenes indicates that 

further optimization may be necessary for high-density scenarios. 

 

 

IV. CONCLUSIONS 

This paper presents ADAM, a novel approach for adaptive heatmap visualization in real-time object 

detection. Through experimental evaluation, we have demonstrated significant improvements in 

processing speed for simple scenes and consistent memory efficiency across different scenarios, 

while successfully eliminating ghost effects that plague traditional methods. Our results show that 

adaptive approaches can effectively balance performance and visualization quality, achieving a 97% 

improvement in processing speed for simple scenes while maintaining comparable performance in 

complex scenarios. The trade-off between temporal consistency and accurate activity representation 

highlights the importance of context-aware adaptation in visual analytics systems. Future research 

should focus on three key areas: optimization for complex scenes, integration of machine learning 

approaches for kernel adaptation, and implementation of parallel processing techniques. First, 

optimization strategies for complex scenes could enhance performance without sacrificing 

adaptation quality. Second, the integration of machine learning approaches might enable more 

intelligent kernel adaptation mechanisms. Finally, investigating parallel processing techniques 

could help maintain real-time performance in high-density scenarios while preserving the benefits 

of adaptive visualization.  

 

REFERENCES 

[1] A. S. Rao et al., “Real-time monitoring of construction sites: Sensors, methods, and applications,” 

Autom Constr, vol. 136, p. 104099, Apr. 2022, doi: 10.1016/J.AUTCON.2021.104099. 

[2] C. Linse, H. Alshazly, and T. Martinetz, “A walk in the black-box: 3D visualization of large neural 

networks in virtual reality,” Neural Comput Appl, vol. 34, no. 23, pp. 21237–21252, Dec. 2022, doi: 

10.1007/S00521-022-07608-4/TABLES/8. 

[3] K. Bayoudh, R. Knani, F. Hamdaoui, and A. Mtibaa, “A survey on deep multimodal learning for 

computer vision: advances, trends, applications, and datasets,” The Visual Computer 2021 38:8, vol. 

38, no. 8, pp. 2939–2970, Jun. 2021, doi: 10.1007/S00371-021-02166-7. 



JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025   ISSN : 2527-9866 

306 

 

[4] X. Wang, L. Zhu, Y. Wu, and Y. Yang, “Symbiotic Attention for Egocentric Action Recognition With 

Object-Centric Alignment,” IEEE Trans Pattern Anal Mach Intell, vol. 45, no. 6, pp. 6605–6617, Jun. 

2023, doi: 10.1109/TPAMI.2020.3015894. 

[5] F. Li, Z. Yang, and Y. Gui, “SES-YOLOv8v5: small object graphics detection and visualization 

applications,” Visual Computer, pp. 1–14, Aug. 2024, doi: 10.1007/S00371-024-03591-

0/FIGURES/10. 

[6] S. Chen, J. Yu, and S. Wang, “One-dimensional convolutional neural network-based active feature 

extraction for fault detection and diagnosis of industrial processes and its understanding via 

visualization,” ISA Trans, vol. 122, pp. 424–443, Mar. 2022, doi: 10.1016/J.ISATRA.2021.04.042. 

[7] E. Kim, D. Gopinath, C. S. Păsăreanu, and S. A. Seshia, “A programmatic and semantic approach to 

explaining and debugging neural network based object detectors,” Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition, pp. 11125–11134, 2020, doi: 

10.1109/CVPR42600.2020.01114. 

[8] J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Deep learning in computer vision: A critical review of 

emerging techniques and application scenarios,” Machine Learning with Applications, vol. 6, p. 100134, 

Dec. 2021, doi: 10.1016/J.MLWA.2021.100134. 

[9] X. Li et al., “Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond,” 

Knowl Inf Syst, vol. 64, no. 12, pp. 3197–3234, Dec. 2022, doi: 10.1007/S10115-022-01756-

8/TABLES/3. 

[10] S. G. Verma, S. Maurya, H. Pant, A. K. Yadav, S. Thomas Varghese, and R. Garg, “YOLOv8: 

Redefining Real-Time Object Detection Accuracy and Efficiency,” 2024 IEEE 3rd World Conference 

on Applied Intelligence and Computing (AIC), pp. 1123–1129, Jul. 2024, doi: 

10.1109/AIC61668.2024.10731055. 

[11] A. Karasmanoglou, M. Antonakakis, and M. Zervakis, “Heatmap-based Explanation of YOLOv5 

Object Detection with Layer-wise Relevance Propagation,” IST 2022 - IEEE International Conference 

on Imaging Systems and Techniques, Proceedings, 2022, doi: 10.1109/IST55454.2022.9827744. 

[12] S. Phatangare, S. Kate, D. Khandelwal, A. Khandetod, and A. Kharade, “Real-time Human Activity 

Detection using YOLOv7,” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics 

and Cloud), I-SMAC 2023 - Proceedings, pp. 1069–1076, 2023, doi: 10.1109/I-

SMAC58438.2023.10290168. 

[13] T. Yamauchi and M. Ishikawa, “SPATIAL SENSITIVE GRAD-CAM: VISUAL EXPLANATIONS 

FOR OBJECT DETECTION BY INCORPORATING SPATIAL SENSITIVITY,” Proceedings - 

International Conference on Image Processing, ICIP, pp. 256–260, 2022, doi: 

10.1109/ICIP46576.2022.9897350. 

[14] R. Wu, X. Xiao, G. Hu, H. Zhao, H. Zhang, and Y. Peng, “DetOH: An Anchor-Free Object Detector 

with Only Heatmaps,” Lecture Notes in Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14177 LNAI, pp. 152–167, 2023, doi: 

10.1007/978-3-031-46664-9_11/TABLES/4. 

[15] S. Zhao, L. Zhou, W. Wang, D. Cai, T. L. Lam, and Y. Xu, “Toward Better Accuracy-Efficiency Trade-

Offs: Divide and Co-Training,” IEEE Transactions on Image Processing, vol. 31, pp. 5869–5880, 2022, 

doi: 10.1109/TIP.2022.3201602. 

[16] W. E. Villegas, S. Sanchez-Viteri, and S. Lujan-Mora, “Real-Time Recognition and Tracking in Urban 

Spaces Through Deep Learning: A Case Study,” IEEE Access, vol. 12, pp. 95599–95612, 2024, doi: 

10.1109/ACCESS.2024.3426295. 

[17] X. Hao, J. Tian, H. Ding, K. Zhao, and M. Gen, “An enhanced two phase estimation of distribution 

algorithm for solving scheduling problem,” https://doi.org/10.1080/17509653.2022.2085205, pp. 1–8, 

Jun. 2022, doi: 10.1080/17509653.2022.2085205. 

[18] Y. Qi, H. Zhang, and J. Liu, “More accurate heatmap generation method for human pose estimation,” 

Multimed Syst, vol. 30, no. 4, pp. 1–11, Aug. 2024, doi: 10.1007/S00530-024-01390-0/TABLES/5. 

[19] S. Dubey and M. Dixit, “A comprehensive survey on human pose estimation approaches,” Multimedia 

Systems 2022 29:1, vol. 29, no. 1, pp. 167–195, Aug. 2022, doi: 10.1007/S00530-022-00980-0. 

[20] P. Chen, Q. Li, S. Biaz, T. Bui, and A. Nguyen, “gScoreCAM: What Objects Is CLIP Looking At?,” 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and 



JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 1, MARET 2025   ISSN : 2527-9866 

307 

 

Lecture Notes in Bioinformatics), vol. 13844 LNCS, pp. 588–604, 2023, doi: 10.1007/978-3-031-

26316-3_35/FIGURES/4. 

[21] Z. Xu, E. Hrustic, and D. Vivet, “CenterNet Heatmap Propagation for Real-Time Video Object 

Detection,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), vol. 12370 LNCS, pp. 220–234, 2020, doi: 

10.1007/978-3-030-58595-2_14/TABLES/5. 

[22] Y. Qi, H. Zhang, and J. Liu, “More accurate heatmap generation method for human pose estimation,” 

Multimed Syst, vol. 30, no. 4, pp. 1–11, Aug. 2024, doi: 10.1007/S00530-024-01390-0/TABLES/5. 

[23] L. Yan, Y. Qin, and J. Chen, “Scale-Balanced Real-Time Object Detection With Varying Input-Image 

Resolution,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 1, pp. 242–

256, Jan. 2023, doi: 10.1109/TCSVT.2022.3198329. 

[24] Z. Xu, E. Hrustic, and D. Vivet, “CenterNet Heatmap Propagation for Real-Time Video Object 

Detection,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), vol. 12370 LNCS, pp. 220–234, 2020, doi: 

10.1007/978-3-030-58595-2_14/TABLES/5. 

[25] C. Chen, G. Wang, C. Peng, Y. Fang, D. Zhang, and H. Qin, “Exploring Rich and Efficient Spatial 

Temporal Interactions for Real-Time Video Salient Object Detection,” IEEE Transactions on Image 

Processing, vol. 30, pp. 3995–4007, 2021, doi: 10.1109/TIP.2021.3068644. 

[26] H. F. Ates, A. Siddique, and B. Gunturk, “HMRN:  regression network to detect and track small objects 

in wide-area motion imagery,” Signal Image Video Process, vol. 17, no. 1, pp. 39–45, Feb. 2023, doi: 

10.1007/S11760-022-02201-7/TABLES/5. 

[27] R. Dong, S. Yin, L. Jiao, J. An, and W. Wu, “ASIPNet: Orientation-Aware Learning Object Detection 

for Remote Sensing Images,” Remote Sensing 2024, Vol. 16, Page 2992, vol. 16, no. 16, p. 2992, Aug. 

2024, doi: 10.3390/RS16162992. 

[28] J. Mu, Q. Su, X. Wang, W. Liang, S. Xu, and K. Wan, “A small object detection architecture with 

concatenated detection heads and multi-head mixed self-attention mechanism,” J Real-time Image 

Process, vol. 21, no. 6, pp. 1–15, Dec. 2024, doi: 10.1007/S11554-024-01562-1/TABLES/14. 

[29] H. F. Ates, A. Siddique, and B. Gunturk, “HMRN:  regression network to detect and track small objects 

in wide-area motion imagery,” Signal Image Video Process, vol. 17, no. 1, pp. 39–45, Feb. 2023, doi: 

10.1007/S11760-022-02201-7/TABLES/5. 

[30] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Crespo, “Memory resource management for 

real-time systems,” Proceedings - Euromicro Conference on Real-Time Systems, pp. 201–210, 2007, 

doi: 10.1109/ECRTS.2007.18. 

[31] Anggi Andriyadi, “Smoking Detection - v1 2024-08-17 11:52pm,” Roboflow. Accessed: Nov. 22, 2024. 

[Online]. Available: https://universe.roboflow.com/husky-wrfw6/smoking-detection-3i0zg-

kcrv5/dataset/1 

[32] T. Y. Lin et al., “Microsoft COCO: Common Objects in Context,” Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 

8693 LNCS, no. PART 5, pp. 740–755, May 2014, doi: 10.1007/978-3-319-10602-1_48. 

  

ACKNOLOWGDMENT  

This work was sponsored by Institut Informatika dan Bisnis Darmajaya (IIB Darmajaya) under 

grant No. SK.0536/DMJ/REK/LPPM.X.2024 

 

 

 


