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Abstract - Breakwater construction in Indonesia frequently employs tetrapods to dissipate wave energy.
However, the placement process remains manual, relying on divers to guide crane operators. This approach
not only poses safety risks but also limits visibility due to underwater turbidity. While prior research has
focused on underwater image enhancement, the integration of tetrapod object detection remains unexplored.
This study proposes a combined method of underwater image enhancement and tetrapod object detection to
support land-based operator visualization. Auto-Level Filtering and Histogram Equalization techniques were
applied to enhance image clarity, followed by object detection using the YOLOv7-tiny model. Tetrapod
models at a 1:20 scale were used for training and testing. The proposed system achieved a mean average
precision (mAP) of 0.95. Evaluation was conducted across 12 scenarios, involving four lighting levels and
two water conditions: clear and 45.8% turbidity. The object detection confidence scores were 0.80 without
enhancement, 0.85 with Histogram Equalization, and 0.84 with Auto-Level Filtering. Multiple object
detection achieved an accuracy of 88.75%, outperforming previous approaches using YOLOv4-tiny. The
results demonstrate the potential of integrating image enhancement and deep learning-based object detection
for improving underwater operational safety and placement precision in breakwater construction.

Keywords — Breakwater construction, Tetrapod, Underwater Image, Object Detection, Turbidity, Computer
Vision.

I INTRODUCTION

In coastal engineering, tetrapods are commonly employed as armor units in breakwater structures
to dissipate wave energy and prevent scouring at the base. Their distinctive geometric configuration
facilitates interlocking, providing structural stability and long-term durability against hydrodynamic
forces. Accurate placement of tetrapods is critical; misalignment or improper orientation can lead
to displacement or structural failure under high wave impact [1]. In Indonesia, the conventional
method for tetrapod placement involves land-based or pontoon-mounted hydraulic cranes, guided
manually by divers who ensure that each unit is positioned according to the interlocking grid plan
[2], [3]. However, this manual approach poses significant safety risks for divers and suffers from
operational inefficiencies, particularly in high-current or low-visibility environments. The need for
remote or semi-automated monitoring systems has led to interest in vision-based technologies to
replace or augment diver-based guidance. Yet, object detection in underwater environments is
inherently challenging due to complex optical distortions. Underwater imagery is subject to light
attenuation, scattering, and absorption, resulting in poor contrast, colour distortion, and noise. These
effects vary significantly with depth, water turbidity, and particle concentration, severely degrading
visual quality [4].

Prior research has explored various underwater image enhancement techniques such as Multi-Scale
Retinex with Colour Restoration (MSRCR), Contrast-Limited Adaptive Histogram Equalization
(CLAHE), and basic Histogram Equalization (HE) [5]. While effective to some extent, these
approaches often overlook dynamic environmental factors such as variable lighting conditions.
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Some studies have integrated enhancement with object detection; for instance, YOLOv4-tiny
combined with Histogram Equalization has achieved a confidence score of 0.76 in underwater
scenarios [6]. Nonetheless, most existing research focuses on small, colourful marine organisms
(e.g., scallops, starfish), and is based on datasets such as TrashCan or URPC, which may not
generalise to large, low-contrast man-made structures like tetrapods [7]-[10]. Furthermore, the
effectiveness of detection algorithms under varying turbidity and lighting levels remains
underexplored. Large objects with non-distinctive textures and neutral colours, such as tetrapods,
present unique challenges for detection systems. These gaps underscore the need for robust, real-
time object detection frameworks tailored to underwater structural applications. Despite significant
progress in underwater vision and deep learning-based detection, few studies have specifically
addressed the detection of large-scale, low-texture, and low-contrast structures essential to coastal
infrastructure. Prior works have largely neglected performance under realistic conditions of
turbidity and lighting variability, which are common in field deployment scenarios. This study
addresses these challenges by proposing an integrated vision-based framework that combines visual
enhancement methods (Histogram Equalisation and Auto-Level Filtering) with the YOLOv7-tiny
detection model. The proposed approach is evaluated under controlled variations in lighting and
turbidity, using tetrapod objects modelled at a 1:20 scale. The main contribution of this work is the
application and evaluation of a lightweight deep learning model optimised for real-time underwater
object detection in the context of civil marine engineering and the demonstration of improved
detection performance over YOLOv4-tiny in challenging visual environments.

I1. SIGNIFICANCE OF THE STUDY

Input : Pre-Processing Image Object Detection Output
i
e ; - " H Detected
Underwater : E['ﬁ}gﬁ;g{?on/ YOLOV7-tiny | ! ar?d C”“?Fd
; the number
Camera View ———— Auto Level ! of object
Filter

Jetson Nano

Fig. 1: Design System of Research

Based on the system design in Figure 1, the input of this system is the results of underwater camera
captures, then processed at the image pre-processing stage using the Histogram Equalization/Auto
Level Filter method. After that, it is processed using YOLOvV7-tiny to detect and count the number
of tetrapod objects.

A. Visual Feature Enhancement
Visual Feature Enhancement plays a crucial role in improving the interpretability and discriminative
quality of image data in various computer vision and image analysis tasks. The primary objective
of visual feature enhancement is to amplify relevant visual information while suppressing noise or
irrelevant background details, thus facilitating more accurate detection, recognition, and
classification processes. This research applied Histogram Equalization and Auto Level Filtering for
this step.

1. Auto Level Filter
The Auto Levels Filter is a simplified automatic adjustment tool that remaps the tonal range of an
image by setting new black and white points. It adjusts the darkest and lightest pixels in an image
so that the darkest pixels are pushed closer to pure black (0), the lightest pixels are pushed closer to
pure white (255), and the midtones are redistributed proportionally across the range. This
remapping is performed independently for each of the three RGB colour channels (Red, Green, and
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Blue). As a result, Auto Levels not only increases contrast but can also shift the colour balance
slightly, depending on the tonal distribution of each channel. The equation of Auto Level Filtering
is as follows

255

(i - imin) (1)

Y= tmax=lmin
With i is the original image’s pixel value, i,,;, is the minimum image pixel value, i, 1S the
maximum image pixel value, and y is the final pixel value. The algorithm operates by continuously
capturing frames and converting them from the RGB to the YUV colour space to isolate luminance
information (Y channel). It calculates the minimum and maximum luminance values to determine
a scaling factor, which is then used to normalize and adjust the brightness across the image. After
modifying the luminance channel, it recombines it with the chrominance channels (U and V) and
converts the image back to RGB. This enhanced frame is subsequently passed to a YOLO-based
detection function for object recognition. The process iterates for each incoming frame, effectively
improving contrast and detection reliability in low-visibility or underwater environments.

2. Histogram Equalization
Histogram Equalization is one of the most popular image processing methods in the spatial domain
based on intensity transformation because it is very efficient, computationally effective, and simple
to implement. Currently, modifications of the method are widely used to enhance images by
increasing contrast [8]. The definition of equalization is often defined as follows,
s=T@) = for pr (w)dw (2)

With p,-(w) is the PDF (Probability Density Function) of intensity values in the input image,
T(r) is the CDF (Cumulative Distribution Function), s € [0,1] is the output normalized intensity?
In discrete form, for an image with L are possible intensity levels (0,1, ..., L — 1) the transformation
is given by,

s =T = 1;/1—_13 ooy A3)

Where sy, is the output intensity, 73, is the input intensity, n; is the number of pixels with intensity
17, Mx N is the total number of pixels in the image, and L is the number of intensity levels (typically
256 for 8-bit images). This transformation redistributes the pixel intensities so that the histogram
becomes approximately flat, thus enhancing contrast in areas where intensities are concentrated
within a narrow range. The algorithm of Histogram Equalization describes a visual preprocessing
pipeline based on Histogram Equalization to enhance the quality of input frames before passing
them to an object detection model, particularly YOLO. The enhancement focuses on improving the
contrast of the image by redistributing the intensity values in the luminance channel. This is
especially useful in conditions with poor visibility, such as underwater imaging or low-light
environments.

B. Deep Learning
CNNs are designed to mimic the human visual cortex, leveraging the concept of local receptive
fields and hierarchical feature extraction. Each layer in a CNN can be interpreted as a feature map,
progressively extracting higher-level features from the raw input image. The input layer of a CNN
typically accepts a three-dimensional matrix that represents different colour channels (e.g., RGB).
As the signal propagates through the network, each layer performs specific transformations:
Convolutional layers apply learnable filters to detect local patterns such as edges, textures, or shapes;
activation functions (such as ReLU) introduce non-linearity, enabling the network to model
complex relationships; and pooling layers (e.g., max pooling) reduce the spatial dimensions,
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preserving essential features while minimizing computational cost and mitigating overfitting.
Internally, the resulting representations take the form of multichannel feature maps, where each
channel encodes a learned abstraction. Through deep stacking of these layers, CNNs are capable of
learning highly abstract and semantically rich features. To perform specific tasks such as
classification or regression, the convolutional and pooling layers are followed by one or more fully
connected layers. These layers integrate the spatially extracted features and enable task-specific
learning. Finally, the output layer typically incorporates an activation function such as SoftMax (for
multi-class classification) or sigmoid (for binary classification), which converts the network’s raw
scores into probabilistic output values. The architectural flexibility and hierarchical structure of
CNNs make them particularly effective across various domains, including medical imaging,
autonomous driving, and facial recognition. Furthermore, CNNs form the backbone of many
modern architectures such as ResNet, VGG, and Inception, each introducing innovations in depth,
connectivity, and performance [11]. This paradigm shift marks a significant departure from the
limitations of traditional machine learning approaches, positioning deep learning as the dominant
methodology in modern Al research and deployment [12]. The primary goal of object detection is
to determine both the location and the category of objects present in a given image.
1. YOLOv7
YOLOvV7 introduces a compound model scaling mechanism tailored for concatenated network
architectures. The objective of this scaling strategy is to dynamically adjust architectural attributes
in order to produce model variants of different computational complexity and inference speed,
aligning with diverse deployment scenarios. The proposed compound scaling technique is designed
to preserve the essential architectural characteristics of the base model, thereby maintaining
structural efficiency and detection performance.
2. YOLOv7-tiny

YOLOV7-Tiny is a compact and computationally efficient variant of the YOLOV7 object detection
architecture, developed to meet the increasing demand for high-speed, real-time detection systems
that can run on edge devices and resource-limited hardware. As an evolution of the well-established
YOLOvV3 and YOLOv4 models, YOLOv7-Tiny incorporates critical improvements in backbone
design, feature aggregation, and optimization techniques while preserving the fundamental real-
time detection principles of the YOLO family. YOLOvV7-Tiny is particularly advantageous for
deployment in domains requiring fast and efficient object detection, such as autonomous vehicles,
real-time surveillance systems, drones, and mobile computing platforms. Despite its compact size
and reduced computational complexity, it achieves robust performance across various benchmark
datasets, demonstrating that architectural simplification does not necessarily entail a significant loss

of accuracy [13]. Table 1 is the configuration of YOLOvV7-tiny.
Table 1: YOLOv7-tiny Configuration

Layer In O Ker Stri Pa Activati Layer In O Ker Sti Pa Activati
—— —— ut nel de d on ——— — ut nel de d on
com 32 G R S I 1 e
Conv 32 64 (33)’ (22)’ (11)’ chlik(y/R MP 64 64 (22)’ (22)’ (00)’ -
com ot 32 Gy G R S I S
Conv 64 32 (11)’ (11)’ (00)’ Li‘z’gR Conv 64 64 (11)’ (11)’ (00)’ Lee‘z’gR
com 3232 G Gy R S T S
Concat - - - - - - Concat - - - - - -
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Based on Table 1, there are several parts that affect its performance: Using concatenation and
convolution intensively to merge features, Using the Leaky ReLU activation function,
Increasing accuracy by using concatenation and up-sampling to support multi-scale detection,
and not using Spatial Pyramid Pooling with Fusions but overcoming with convolution and
concatenation. With these parts, YOLOv7-tiny is designed to be more complex than YOLOv3-
tiny and YOLOv4-tiny. YOLOV7-tiny provides excellent accuracy performance thanks to
extensive feature merging and the use of multi-scale detection. This study contributes both
practical and academic significance. Practically, the proposed system has the potential to
transform tetrapod placement operations by enabling remote object detection, thus reducing
dependence on divers and improving worker safety in high-risk underwater environments. The
system’s capability to maintain high detection accuracy under varying turbidity and lighting
levels aligns with real-world deployment challenges commonly encountered in Indonesia’s
coastal infrastructure projects. This can support decision-making for crane operators, reduce
human error, and shorten placement time in the field. Scientifically, this research introduces a
novel application of YOLOv7-tiny combined with visual enhancement techniques tailored for
large, low-contrast man-made underwater objects. Unlike prior works, which focus on small
biological targets or simulated environments, this study provides a new benchmark for detecting
industrial-scale objects under real aquatic conditions. Furthermore, the curated dataset and
controlled evaluation scenarios (involving water turbidity, lighting, and multi-object setups)
offer a valuable reference for future studies in underwater machine vision and civil marine
engineering. By addressing real-world constraints while advancing lightweight deep learning
frameworks for submerged detection tasks, the findings serve both coastal engineering
practitioners and the broader research community seeking robust vision-based solutions in
marine contexts.

III. RESULT AND DISCUSSION
This part discusses the experimental setup and results with the analysis.

A. Experimental Setup
In this session, the author explains the testing stages on the system built to determine the level
of performance and success of the system implementation. The process of implementation,
compilation, and system creation in this final project was carried out with the specifications in
Table.

Table 2: Device Specification

T‘estmg Part Specification RAM 4GB
Environment GPU 128-core
Processor Intel Core i3 Maxwell
NVIDIA JetPack
Laptop Storage SSD 250GB Sistem 4.6.4
Hardware Operasi (Ubuntu 18.04
RAM 8GB LTS)
GPU Intel UHD Software Visual Studio
Software
Build Code d?ln Text
Processor Quad-core ARM Editor ‘
Jetson Nano A57 @ 1.43 Library OpenCV 4.8 with
Hardware GHz CUDA
128GB memory
Storage card
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The camera distance with respect to the object is £15.8 cm. The dataset utilized in this study
was obtained through controlled laboratory experiments conducted in a custom-built
underwater test tank. Tetrapod models at a 1:20 scale were submerged under varying lighting
intensities and turbidity levels to emulate realistic underwater conditions. Image sequences
were captured using fixed underwater cameras positioned at calculated distances to encompass
both single and multiple object configurations. While the dataset closely approximates real-
world underwater scenarios, it is important to note that all data were collected in a simulated
environment rather than in open-sea conditions.

B. Testing Result
This section discusses the result of training for the object detection and testing of object
detection, which divided into two parts, single and multiple objects.

1. Training of Object Detection
The training dataset consisted of labelled frames extracted from video sequences that featured
floating and submerged objects in various positions and backgrounds. The objects were
annotated with bounding boxes using the YOLO format, each accompanied by class labels. The
dataset was augmented using techniques such as random cropping, horizontal flipping, colour
jittering, and Gaussian blur to improve generalization. The YOLOv7-tiny model was initialised
with pretrained weights on the COCO dataset and fine-tuned using a custom dataset of 2597
images, image size 640, batch size 16, and learning rate 0,01 with 50 epochs. The result of the
training process is discussed as follows,

(@ (b) (©)

Fig. 2: (a) Precision Confidence (b) Precision Recall Curve (c) Recall Confidence Curve

Based on Figure 2, the curve shows the change in precision (accuracy of correct detection)
against the confidence threshold. The results show stability in the range of 0.8 to 1. This
indicates that the model is confident that the object recognized is indeed a tetrapod object. The
Precision-Recall Curve shows the relationship between precision and recall. The curve results
show a high precision value throughout the recall range. This can be interpreted as meaning
that the model has very high accuracy in detecting tetrapods with an IoU threshold of 0.5. It can
also be interpreted that the model can detect almost all tetrapod objects that appear. The curve
above is the Re-call-Confidence Curve, which shows the relationship between recall (the
model's ability to find all relevant objects) and confidence. The curve results show a high recall
value when confidence is low and decrease slightly when confidence approaches 1.0. This can
be interpreted, if confidence is low, then the model recognizes almost all objects but is at risk
of error, conversely, with high confidence, the model is more selective in detecting objects but
is at risk of missing some objects.
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@ O
Fig. 3: (a) F1-Confidence Curve (b) Confusion Matrix

The curve in Figure 3 (a) is the F1-Confidence Curve which shows the relationship between F1
(a combination of precision and recall) to confidence. The F1 score is at a value close to 1 in
the confidence range of 0 to 0.8 and then decreases significantly approaching confidence 1.
This shows that the model's ability to detect can be said to be quite robust to variations in
confidence threshold, but becomes too selective if confidence is too high. Figure 6 (b) is a
Confusion Matrix that shows the proportion of correct and incorrect predictions between two
classes, tetrapod and background (no object). The upper left corner shows that the tetrapod was
successfully detected 0.98 or 98% correctly. The lower left corner shows that there were 0.02
or 2% that were not detected. The upper right corner shows that there was no background that
was predicted incorrectly or can be interpreted as no background that was detected as a tetrapod.

2. Testing of Object Detection
The system detection test was conducted in two water conditions and two tetrapod object count

conditions under different lighting conditions. In more detail, the test scenario is written as in
Table 3.

Table 3: Testing Scenario

Number
Tl‘l):f;:;li‘ty Lighting of
Tetrapod
25%
0,
Clear Water ;2;‘;
100% |
25%
Turdibity 50%
45,8% 75%
100%
25%
50%
Clear Water 759
100% 5
25%
Turdibity 50%
45,8% 75%
100%

To measure water turbidity, the Secchi disk is immersed in the water at two specific points. The
first point (D) is when the Secchi disk is no longer visible to the eye, and the second point (D,)
i1s when the Secchi disk becomes visible to the eye again. The value obtained for D; is 48 cm
and D, is 26 cm from the water surface. The values D; and D, are entered into the following
Equation 7.

s=T@) = [ p, (@)dw 7

Then the measurement results are obtained as follows.
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- 48 — 26
P= % x 100% = x 100% (8)

4

P =2x100% = 45.8% 9)
Thus, the water used in the test has a turbidity level (p) is 45.8%.

1) Single Object
The test continued by testing the model's performance in detecting objects in the form of a
tetrapod. These visual results have applied image preprocessing using Histogram Equalization,
Auto Levels Filter, and without any method of image preprocessing method conducted in the
clear water condition. So in this test, the total test scenarios is 12. In each scenario, a 10 second
test video was taken. while the total frames of each scenario are 134. The result is summarized
in Table 4.

Table 4: Single Object Detection in Clear Water

Pre- Lighti  Confiden 0,86
. Confidence 75%
Processin ng ce Value 0
Value
g Image Level Average
0,84 oove
25% 0
0,78
0,86 )
50% 25%
Mo 0,84
Method 0,86 ’
Level
. 0,87
100% 0,88 Filter 75%
0,88
0,8 ’
b 1 0
Histogram 25% 00%
Equalizati 0.87
on 50%

Based on the test results in 12 test scenarios, it was found that in clear water conditions, all
models showed performance with confidence of more than 0.78 using YOLOv7-tiny. The
average confidence value of YOLOvV7-tiny performance with the combination of Histogram
Equalization method is 0,85. Meanwhile the average confidence value of YOLOv7-tiny
performance with the combination of Auto Level Filter is 0,84. And the average confidence
value of YOLOV7-tiny performance only is 0,86. The test is continued by testing the model's
performance in detecting tetrapod object in the turbidity water 45,8% with 4 various lighting
levels. The result is summarized in Table 5.

Table 5: Single Object Detection in 45,5% Turbidity Water

P Pre- . Lightin  Confiden  Confidence 759 0,76

rocessin o

g Level ce Value Value
g Image

0,74 0,78

25% ’ 100%

No

0,83

25%

Method 0,73 ;
50% -
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0,83 0,85 SNl
50% 50%

Histogram 0.86 : : Auto 0,84 &
Equalizati 759, ’ Level 75% : :
on Filtering i

0,78 ) '
0,84
25%

The combination of external lighting levels and the application of image pre-processing
influence detection performance. Lower lighting causes a decrease in confidence, especially in
turbid water conditions. However, YOLOv7-tiny can maintain the ability to maintain
confidence so that the confidence value is almost the same as when the water condition is clear,
which is above 073. The average confidence value of YOLOv7-tiny performance with the
combination of Histogram Equalization method is 0,84. Meanwhile, the average confidence
value of YOLOV7-tiny performance with the combination of Auto Level Filter is 0,82. And the
average confidence value of YOLOv7-tiny performance only is 0,75.

In both clear and turbid water, detection confidence improves with lighting intensity,
confirming the model’s sensitivity to illumination. However, the use of Histogram Equalization
consistently boosts detection across all lighting levels, especially under 45.8% turbidity. This
confirms its effectiveness in restoring contrast under poor visibility. In contrast, Auto Level
Filtering showed fluctuating performance, particularly at 25% and 100% lighting, possibly due
to local channel overcompensation or colour imbalance. The inconsistent results from Auto
Level Filtering may stem from its per-channel adjustment strategy, which can unintentionally
distort colour channels and reduce edge sharpness, two critical cues in object localization. This
is especially problematic under extreme lighting or turbidity, where noise amplification may
occur.

2) Multiple Objects

In this session is to test the accuracy of the system in detecting 5 tetrapod objects using
YOLOv7-tiny. The testing was carried out in 2 water conditions (namely clear water and water
turbidity of 45.8%) and 4 lighting levels (25%, 50%, 75%, and 100%). In each test scenario, a
10-second video was taken. The total frames for the clear water scenario were 134 frames (for
each lighting level) and 126 frames for the 45.8% water turbidity scenario (at each lighting
level). The result is represented in Table 6.

Table 6: YOLOv7-tiny Multiple Object Test Results
Number of Detected Tetrapod with

Number of Pre-Processing Image Method
Water I
Turbidit Lighting Tetrapod Histooram Auto
y (Refference) No Method Istogral Level
Equalization o
Filtering
25% 4 5 4
Clear 50% 4 5 5
Water 75% 4 5 4
100% 5 5 5 4
0,
45.8% 25 OA) 2 4 4
Turbidi 2% 3 > 4
b 75% 3 5 4
100% 4 4 4
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Based on Table 6, the performance of the YOLOv7-tiny method in detecting multiple objects
also depends on the application of the pre-processing image method. Without the image pre-
processing method, the worst result is when in the water turbidity test scenario of 45.8% with
an external lighting level of 25%, only 2 objects are detected when there should be 5. When
using the Histogram Equalization and Auto Level Filtering Methods as image pre-processing,
the worst result is that it can detect 4 objects from the supposed 5 objects in several scenarios
(especially when the water turbidity is 45.8%). Meanwhile for the image result for this test is
presented in Table 7.

Table 7: Visual Results of YOLOv7-tiny in Multiple Objects Testing

Pre Processing Image Method Pre Processing Image Method
Lighti Histogram Auto Lighti Histogram Auto
n No Equalizati Level n No Equalizati Level
& Methoa 1 : & Methoa 4 :
on Filter on Filter
Clear Water 45,8% Turbidity Water
25% 25% s =
50% 50%
75% 75%
100% 100%

Based the 8 test scenarios, without using the image pre-processing method, only 1 time
successfully detected all objects. When using Histogram Equalization, 6 times the system was
able to detect all objects in their entirety. When the combination of the YOLOv7-tiny and Auto
Level Filtering methods was applied to 8 test scenarios, 1 time the system was able to detect all
objects (in the clear water scenario with the help of external lighting level 50%), and the rest
detected 4 objects (from what should have been 5).

IV. CONCLUSION

This study utilized YOLOv7-tiny combined with visual feature enhancement methods,
Histogram Equalization and Auto Level Filtering for underwater tetrapod detection. The model
was trained on a custom dataset of 2,597 images and achieved a mean average precision (mAP)
0f'0.95. In testing across 12 scenarios, each involving 10-second video sequences under various
lighting and turbidity levels, the system produced an average object detection confidence of
0.83, outperforming a previous YOLOv4-tiny implementation (0.76). For multiple-object
detection, the system achieved an accuracy of 88.75%, reflecting a 2.5% improvement over
prior work. These results demonstrate the system’s potential for practical deployment in coastal
construction by reducing diver dependency, improving safety, and enhancing placement
precision. Nevertheless, the experiments were conducted in a controlled laboratory
environment using scaled models, which may not fully reflect real underwater conditions.
Future research should evaluate the system in open-sea scenarios, include non-tetrapod
distractor objects, and explore advanced detection architectures to further improve robustness
and generalizability.
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