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Abstract - Breakwater construction in Indonesia frequently employs tetrapods to dissipate wave energy. 

However, the placement process remains manual, relying on divers to guide crane operators. This approach 

not only poses safety risks but also limits visibility due to underwater turbidity. While prior research has 

focused on underwater image enhancement, the integration of tetrapod object detection remains unexplored. 

This study proposes a combined method of underwater image enhancement and tetrapod object detection to 

support land-based operator visualization. Auto-Level Filtering and Histogram Equalization techniques were 

applied to enhance image clarity, followed by object detection using the YOLOv7-tiny model. Tetrapod 

models at a 1:20 scale were used for training and testing. The proposed system achieved a mean average 

precision (mAP) of 0.95. Evaluation was conducted across 12 scenarios, involving four lighting levels and 

two water conditions: clear and 45.8% turbidity. The object detection confidence scores were 0.80 without 

enhancement, 0.85 with Histogram Equalization, and 0.84 with Auto-Level Filtering. Multiple object 

detection achieved an accuracy of 88.75%, outperforming previous approaches using YOLOv4-tiny. The 

results demonstrate the potential of integrating image enhancement and deep learning-based object detection 

for improving underwater operational safety and placement precision in breakwater construction. 

 

Keywords – Breakwater construction, Tetrapod, Underwater Image, Object Detection, Turbidity, Computer 

Vision. 
 

I. INTRODUCTION 

In coastal engineering, tetrapods are commonly employed as armor units in breakwater structures 

to dissipate wave energy and prevent scouring at the base. Their distinctive geometric configuration 

facilitates interlocking, providing structural stability and long-term durability against hydrodynamic 

forces. Accurate placement of tetrapods is critical; misalignment or improper orientation can lead 

to displacement or structural failure under high wave impact [1]. In Indonesia, the conventional 

method for tetrapod placement involves land-based or pontoon-mounted hydraulic cranes, guided 

manually by divers who ensure that each unit is positioned according to the interlocking grid plan 

[2], [3]. However, this manual approach poses significant safety risks for divers and suffers from 

operational inefficiencies, particularly in high-current or low-visibility environments. The need for 

remote or semi-automated monitoring systems has led to interest in vision-based technologies to 

replace or augment diver-based guidance. Yet, object detection in underwater environments is 

inherently challenging due to complex optical distortions. Underwater imagery is subject to light 

attenuation, scattering, and absorption, resulting in poor contrast, colour distortion, and noise. These 

effects vary significantly with depth, water turbidity, and particle concentration, severely degrading 

visual quality [4]. 

Prior research has explored various underwater image enhancement techniques such as Multi-Scale 

Retinex with Colour Restoration (MSRCR), Contrast-Limited Adaptive Histogram Equalization 

(CLAHE), and basic Histogram Equalization (HE) [5]. While effective to some extent, these 

approaches often overlook dynamic environmental factors such as variable lighting conditions. 
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Some studies have integrated enhancement with object detection; for instance, YOLOv4-tiny 

combined with Histogram Equalization has achieved a confidence score of 0.76 in underwater 

scenarios [6]. Nonetheless, most existing research focuses on small, colourful marine organisms 

(e.g., scallops, starfish), and is based on datasets such as TrashCan or URPC, which may not 

generalise to large, low-contrast man-made structures like tetrapods [7]–[10]. Furthermore, the 

effectiveness of detection algorithms under varying turbidity and lighting levels remains 

underexplored. Large objects with non-distinctive textures and neutral colours, such as tetrapods, 

present unique challenges for detection systems. These gaps underscore the need for robust, real-

time object detection frameworks tailored to underwater structural applications. Despite significant 

progress in underwater vision and deep learning-based detection, few studies have specifically 

addressed the detection of large-scale, low-texture, and low-contrast structures essential to coastal 

infrastructure. Prior works have largely neglected performance under realistic conditions of 

turbidity and lighting variability, which are common in field deployment scenarios. This study 

addresses these challenges by proposing an integrated vision-based framework that combines visual 

enhancement methods (Histogram Equalisation and Auto-Level Filtering) with the YOLOv7-tiny 

detection model. The proposed approach is evaluated under controlled variations in lighting and 

turbidity, using tetrapod objects modelled at a 1:20 scale. The main contribution of this work is the 

application and evaluation of a lightweight deep learning model optimised for real-time underwater 

object detection in the context of civil marine engineering and the demonstration of improved 

detection performance over YOLOv4-tiny in challenging visual environments.  

 

II.  SIGNIFICANCE OF THE STUDY 

 

 
Fig. 1: Design System of Research 

Based on the system design in Figure 1, the input of this system is the results of underwater camera 

captures, then processed at the image pre-processing stage using the Histogram Equalization/Auto 

Level Filter method. After that, it is processed using YOLOv7-tiny to detect and count the number 

of tetrapod objects. 

A. Visual Feature Enhancement 

Visual Feature Enhancement plays a crucial role in improving the interpretability and discriminative 

quality of image data in various computer vision and image analysis tasks. The primary objective 

of visual feature enhancement is to amplify relevant visual information while suppressing noise or 

irrelevant background details, thus facilitating more accurate detection, recognition, and 

classification processes. This research applied Histogram Equalization and Auto Level Filtering for 

this step. 

1. Auto Level Filter 

 The Auto Levels Filter is a simplified automatic adjustment tool that remaps the tonal range of an 

image by setting new black and white points. It adjusts the darkest and lightest pixels in an image 

so that the darkest pixels are pushed closer to pure black (0), the lightest pixels are pushed closer to 

pure white (255), and the midtones are redistributed proportionally across the range.  This 

remapping is performed independently for each of the three RGB colour channels (Red, Green, and 
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Blue). As a result, Auto Levels not only increases contrast but can also shift the colour balance 

slightly, depending on the tonal distribution of each channel. The equation of Auto Level Filtering 

is as follows 

 

𝑦 =
255

𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛
 (𝑖 − 𝑖𝑚𝑖𝑛)           (1) 

 

With 𝑖 is the original image’s pixel value, 𝑖𝑚𝑖𝑛 is the minimum image pixel value, 𝑖𝑚𝑎𝑥 is the 

maximum image pixel value, and 𝑦 is the final pixel value. The algorithm operates by continuously 

capturing frames and converting them from the RGB to the YUV colour space to isolate luminance 

information (Y channel). It calculates the minimum and maximum luminance values to determine 

a scaling factor, which is then used to normalize and adjust the brightness across the image. After 

modifying the luminance channel, it recombines it with the chrominance channels (U and V) and 

converts the image back to RGB. This enhanced frame is subsequently passed to a YOLO-based 

detection function for object recognition. The process iterates for each incoming frame, effectively 

improving contrast and detection reliability in low-visibility or underwater environments. 

 

2. Histogram Equalization 

Histogram Equalization is one of the most popular image processing methods in the spatial domain 

based on intensity transformation because it is very efficient, computationally effective, and simple 

to implement. Currently, modifications of the method are widely used to enhance images by 

increasing contrast [8]. The definition of equalization is often defined as follows, 

𝑠 = 𝑇(𝑟) =  ∫ 𝑝𝑟
𝑟

0
(𝜔)𝑑𝜔         (2) 

 

With 𝑝𝑟(𝜔) is the PDF (Probability Density Function) of intensity values in the input image, 

𝑇(𝑟) is the CDF (Cumulative Distribution Function), 𝑠 𝜖 [0,1]  is the output normalized intensity? 

In discrete form, for an image with L are possible intensity levels (0,1, … , 𝐿 − 1)  the transformation 

is given by, 

𝑠𝑘 = 𝑇(𝑟𝑘) =  
𝐿−1

𝑀𝑁
 ∑ 𝑛𝑗

𝑘
𝑗=0          (3) 

 

Where 𝑠𝑘 is the output intensity, 𝑟𝑘 is the input intensity, 𝑛𝑗 is the number of pixels with intensity 

𝑟𝑗, 𝑀𝑥 𝑁 is the total number of pixels in the image, and 𝐿 is the number of intensity levels (typically 

256 for 8-bit images). This transformation redistributes the pixel intensities so that the histogram 

becomes approximately flat, thus enhancing contrast in areas where intensities are concentrated 

within a narrow range. The algorithm of Histogram Equalization describes a visual preprocessing 

pipeline based on Histogram Equalization to enhance the quality of input frames before passing 

them to an object detection model, particularly YOLO. The enhancement focuses on improving the 

contrast of the image by redistributing the intensity values in the luminance channel. This is 

especially useful in conditions with poor visibility, such as underwater imaging or low-light 

environments. 

 

B. Deep Learning 

CNNs are designed to mimic the human visual cortex, leveraging the concept of local receptive 

fields and hierarchical feature extraction. Each layer in a CNN can be interpreted as a feature map, 

progressively extracting higher-level features from the raw input image. The input layer of a CNN 

typically accepts a three-dimensional matrix that represents different colour channels (e.g., RGB). 

As the signal propagates through the network, each layer performs specific transformations: 

Convolutional layers apply learnable filters to detect local patterns such as edges, textures, or shapes; 

activation functions (such as ReLU) introduce non-linearity, enabling the network to model 

complex relationships; and pooling layers (e.g., max pooling) reduce the spatial dimensions, 
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preserving essential features while minimizing computational cost and mitigating overfitting. 

Internally, the resulting representations take the form of multichannel feature maps, where each 

channel encodes a learned abstraction. Through deep stacking of these layers, CNNs are capable of 

learning highly abstract and semantically rich features. To perform specific tasks such as 

classification or regression, the convolutional and pooling layers are followed by one or more fully 

connected layers. These layers integrate the spatially extracted features and enable task-specific 

learning. Finally, the output layer typically incorporates an activation function such as SoftMax (for 

multi-class classification) or sigmoid (for binary classification), which converts the network’s raw 

scores into probabilistic output values. The architectural flexibility and hierarchical structure of 

CNNs make them particularly effective across various domains, including medical imaging, 

autonomous driving, and facial recognition. Furthermore, CNNs form the backbone of many 

modern architectures such as ResNet, VGG, and Inception, each introducing innovations in depth, 

connectivity, and performance [11]. This paradigm shift marks a significant departure from the 

limitations of traditional machine learning approaches, positioning deep learning as the dominant 

methodology in modern AI research and deployment [12]. The primary goal of object detection is 

to determine both the location and the category of objects present in a given image.  

1. YOLOv7 

YOLOv7 introduces a compound model scaling mechanism tailored for concatenated network 

architectures. The objective of this scaling strategy is to dynamically adjust architectural attributes 

in order to produce model variants of different computational complexity and inference speed, 

aligning with diverse deployment scenarios. The proposed compound scaling technique is designed 

to preserve the essential architectural characteristics of the base model, thereby maintaining 

structural efficiency and detection performance.  

2. YOLOv7-tiny 

YOLOv7-Tiny is a compact and computationally efficient variant of the YOLOv7 object detection 

architecture, developed to meet the increasing demand for high-speed, real-time detection systems 

that can run on edge devices and resource-limited hardware. As an evolution of the well-established 

YOLOv3 and YOLOv4 models, YOLOv7-Tiny incorporates critical improvements in backbone 

design, feature aggregation, and optimization techniques while preserving the fundamental real-

time detection principles of the YOLO family. YOLOv7-Tiny is particularly advantageous for 

deployment in domains requiring fast and efficient object detection, such as autonomous vehicles, 

real-time surveillance systems, drones, and mobile computing platforms. Despite its compact size 

and reduced computational complexity, it achieves robust performance across various benchmark 

datasets, demonstrating that architectural simplification does not necessarily entail a significant loss 

of accuracy [13]. Table 1 is the configuration of YOLOv7-tiny. 
Table 1: YOLOv7-tiny Configuration 
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Based on Table 1, there are several parts that affect its performance: Using concatenation and 

convolution intensively to merge features, Using the Leaky ReLU activation function, 

Increasing accuracy by using concatenation and up-sampling to support multi-scale detection, 

and not using Spatial Pyramid Pooling with Fusions but overcoming with convolution and 

concatenation. With these parts, YOLOv7-tiny is designed to be more complex than YOLOv3-

tiny and YOLOv4-tiny. YOLOv7-tiny provides excellent accuracy performance thanks to 

extensive feature merging and the use of multi-scale detection. This study contributes both 

practical and academic significance. Practically, the proposed system has the potential to 

transform tetrapod placement operations by enabling remote object detection, thus reducing 

dependence on divers and improving worker safety in high-risk underwater environments. The 

system’s capability to maintain high detection accuracy under varying turbidity and lighting 

levels aligns with real-world deployment challenges commonly encountered in Indonesia’s 

coastal infrastructure projects. This can support decision-making for crane operators, reduce 

human error, and shorten placement time in the field. Scientifically, this research introduces a 

novel application of YOLOv7-tiny combined with visual enhancement techniques tailored for 

large, low-contrast man-made underwater objects. Unlike prior works, which focus on small 

biological targets or simulated environments, this study provides a new benchmark for detecting 

industrial-scale objects under real aquatic conditions. Furthermore, the curated dataset and 

controlled evaluation scenarios (involving water turbidity, lighting, and multi-object setups) 

offer a valuable reference for future studies in underwater machine vision and civil marine 

engineering. By addressing real-world constraints while advancing lightweight deep learning 

frameworks for submerged detection tasks, the findings serve both coastal engineering 

practitioners and the broader research community seeking robust vision-based solutions in 

marine contexts. 

 

III. RESULT AND DISCUSSION 

This part discusses the experimental setup and results with the analysis. 

 

A. Experimental Setup 

In this session, the author explains the testing stages on the system built to determine the level 

of performance and success of the system implementation. The process of implementation, 

compilation, and system creation in this final project was carried out with the specifications in 

Table. 
Table 2: Device Specification 
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Quad-core ARM 

A57 @ 1.43 

GHz 

Storage 
128GB memory 

card 

RAM 4GB 

GPU 
128-core 

Maxwell 

Software 
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4.6.4 

(Ubuntu 18.04 

LTS) 
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The camera distance with respect to the object is ±15.8 cm. The dataset utilized in this study 

was obtained through controlled laboratory experiments conducted in a custom-built 

underwater test tank. Tetrapod models at a 1:20 scale were submerged under varying lighting 

intensities and turbidity levels to emulate realistic underwater conditions. Image sequences 

were captured using fixed underwater cameras positioned at calculated distances to encompass 

both single and multiple object configurations. While the dataset closely approximates real-

world underwater scenarios, it is important to note that all data were collected in a simulated 

environment rather than in open-sea conditions. 

 

B. Testing Result 

This section discusses the result of training for the object detection and testing of object 

detection, which divided into two parts, single and multiple objects. 

1. Training of Object Detection 

The training dataset consisted of labelled frames extracted from video sequences that featured 

floating and submerged objects in various positions and backgrounds. The objects were 

annotated with bounding boxes using the YOLO format, each accompanied by class labels. The 

dataset was augmented using techniques such as random cropping, horizontal flipping, colour 

jittering, and Gaussian blur to improve generalization. The YOLOv7-tiny model was initialised 

with pretrained weights on the COCO dataset and fine-tuned using a custom dataset of 2597 

images, image size 640, batch size 16,  and learning rate 0,01 with 50 epochs. The result of the 

training process is discussed as follows, 
 

    

 

 

 

 

 
(a) (b) (c) 

Fig. 2:  (a) Precision Confidence (b) Precision Recall Curve (c) Recall Confidence Curve 
Based on Figure 2, the curve shows the change in precision (accuracy of correct detection) 

against the confidence threshold. The results show stability in the range of 0.8 to 1. This 

indicates that the model is confident that the object recognized is indeed a tetrapod object.  The 

Precision-Recall Curve shows the relationship between precision and recall. The curve results 

show a high precision value throughout the recall range. This can be interpreted as meaning 

that the model has very high accuracy in detecting tetrapods with an IoU threshold of 0.5. It can 

also be interpreted that the model can detect almost all tetrapod objects that appear. The curve 

above is the Re-call-Confidence Curve, which shows the relationship between recall (the 

model's ability to find all relevant objects) and confidence. The curve results show a high recall 

value when confidence is low and decrease slightly when confidence approaches 1.0. This can 

be interpreted, if confidence is low, then the model recognizes almost all objects but is at risk 

of error, conversely, with high confidence, the model is more selective in detecting objects but 

is at risk of missing some objects. 
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(a) (b) 

Fig. 3:  (a) F1-Confidence Curve (b) Confusion Matrix 

The curve in Figure 3 (a) is the F1-Confidence Curve which shows the relationship between F1 

(a combination of precision and recall) to confidence. The F1 score is at a value close to 1 in 

the confidence range of 0 to 0.8 and then decreases significantly approaching confidence 1. 

This shows that the model's ability to detect can be said to be quite robust to variations in 

confidence threshold, but becomes too selective if confidence is too high. Figure 6 (b)  is a 

Confusion Matrix that shows the proportion of correct and incorrect predictions between two 

classes, tetrapod and background (no object). The upper left corner shows that the tetrapod was 

successfully detected 0.98 or 98% correctly. The lower left corner shows that there were 0.02 

or 2% that were not detected. The upper right corner shows that there was no background that 

was predicted incorrectly or can be interpreted as no background that was detected as a tetrapod.  

 

2. Testing of Object Detection 

The system detection test was conducted in two water conditions and two tetrapod object count 

conditions under different lighting conditions. In more detail, the test scenario is written as in 

Table 3. 
Table 3: Testing Scenario 

Water 

Turdibity 
Lighting 

Number 

of 

Tetrapod 

Clear Water 

25% 

1 

50% 

75% 

100% 

Turdibity 

45,8% 

25% 

50% 

75% 

100% 

Clear Water 

25%  

 

 

5 

50% 

75% 

100% 

Turdibity 

45,8% 

25% 

50% 

75% 

100% 
 

To measure water turbidity, the Secchi disk is immersed in the water at two specific points. The 

first point (𝐷1) is when the Secchi disk is no longer visible to the eye, and the second point (𝐷2) 

is when the Secchi disk becomes visible to the eye again. The value obtained for 𝐷1 is 48 cm 

and 𝐷2 is 26 cm from the water surface. The values 𝐷1 and 𝐷2 are entered into the following 

Equation 7. 

𝑠 = 𝑇(𝑟) =  ∫ 𝑝𝑟

𝑟

0
(𝜔)𝑑𝜔  (7) 

 

Then the measurement results are obtained as follows. 



JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 3, NOVEMBER  2025   ISSN : 2527-
9866 

 

1377 
 

 

𝑃 =
𝐷1 − 𝐷2

𝐷1

× 100% =
48 − 26

48
× 100%

 
(8) 

 

𝑃 =
22

48
× 100% = 45.8%  (9) 

 

Thus, the water used in the test has a turbidity level (𝑃) is 45.8%.  

 

1) Single Object 

The test continued by testing the model's performance in detecting objects in the form of a 

tetrapod. These visual results have applied image preprocessing using Histogram Equalization, 

Auto Levels Filter, and without any method of image preprocessing method conducted in the 

clear water condition. So in this test, the total test scenarios is 12. In each scenario, a 10 second 

test video was taken. while the total frames of each scenario are 134. The result is summarized 

in Table 4. 

 
Table 4: Single Object Detection in Clear Water 

Pre-

Processin

g Image 

Lighti

ng 

Level 

Confiden

ce Value 

Average 

Confidence 

Value 

No 

Method 

25% 
0,84  

 

50% 
0,86  

 

75% 
0,86  

 

100% 
0,88  

 

Histogram 

Equalizati

on 

25% 
0,8  

 

50% 
0,87 

 

75% 
0,86 

 

100% 
0,88 

 

Auto 

Level 

Filter 

25% 
0,78 

 

50% 
0,84 

 

75% 
0,87 

 

100% 
0,88 

 

 

Based on the test results in 12 test scenarios, it was found that in clear water conditions, all 

models showed performance with confidence of more than 0.78 using YOLOv7-tiny. The 

average confidence value of YOLOv7-tiny performance with the combination of Histogram 

Equalization method is 0,85. Meanwhile the average confidence value of YOLOv7-tiny 

performance with the combination of Auto Level Filter is 0,84. And the average confidence 

value of YOLOv7-tiny performance only is 0,86. The test is continued by testing the model's 

performance in detecting tetrapod object in the turbidity water 45,8% with 4 various lighting 

levels. The result is summarized in Table 5. 

 
Table 5: Single Object Detection in 45,5% Turbidity Water 

Pre-

Processin

g Image 

Lightin

g Level 

Confiden

ce Value 

Confidence 

Value 

No 

Method 

25% 
0,74  

 

50% 
0,73  

 

75% 
0,76  

 

100% 
0,78 

 

25% 
0,83 
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Histogram 

Equalizati

on 

50% 
0,83 

 

75% 
0,86 

 

100% 
0,87 

 

25% 
0,84 

 

Auto 

Level 

Filtering 

50% 
0,85 

 

75% 
0,84 

 

100% 
0,78 

 

 

The combination of external lighting levels and the application of image pre-processing 

influence detection performance. Lower lighting causes a decrease in confidence, especially in 

turbid water conditions. However, YOLOv7-tiny can maintain the ability to maintain 

confidence so that the confidence value is almost the same as when the water condition is clear, 

which is above 073. The average confidence value of YOLOv7-tiny performance with the 

combination of Histogram Equalization method is 0,84. Meanwhile, the average confidence 

value of YOLOv7-tiny performance with the combination of Auto Level Filter is 0,82. And the 

average confidence value of YOLOv7-tiny performance only is 0,75. 

In both clear and turbid water, detection confidence improves with lighting intensity, 

confirming the model’s sensitivity to illumination. However, the use of Histogram Equalization 

consistently boosts detection across all lighting levels, especially under 45.8% turbidity. This 

confirms its effectiveness in restoring contrast under poor visibility. In contrast, Auto Level 

Filtering showed fluctuating performance, particularly at 25% and 100% lighting, possibly due 

to local channel overcompensation or colour imbalance. The inconsistent results from Auto 

Level Filtering may stem from its per-channel adjustment strategy, which can unintentionally 

distort colour channels and reduce edge sharpness, two critical cues in object localization. This 

is especially problematic under extreme lighting or turbidity, where noise amplification may 

occur. 

 

2) Multiple Objects 

In this session is to test the accuracy of the system in detecting 5 tetrapod objects using 

YOLOv7-tiny. The testing was carried out in 2 water conditions (namely clear water and water 

turbidity of 45.8%) and 4 lighting levels (25%, 50%, 75%, and 100%).  In each test scenario, a 

10-second video was taken. The total frames for the clear water scenario were 134 frames (for 

each lighting level) and 126 frames for the 45.8% water turbidity scenario (at each lighting 

level). The result is represented in Table 6. 

 
Table 6: YOLOv7-tiny Multiple Object Test Results 

Water 

Turbidity 
Lighting 

Number of 

Tetrapod 

(Refference) 

Number of Detected Tetrapod with 

Pre-Processing Image Method 

No Method 
Histogram 

Equalization 

Auto 

Level 

Filtering 

Clear 

Water 

25% 

5 

4 5 4 

50% 4 5 5 

75% 4 5 4 

100% 5 5 4 

45,8% 

Turbidity 

Water 

25% 2 4 4 

50% 3 5 4 

75% 3 5 4 

100% 4 4 4 
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Based on Table 6, the performance of the YOLOv7-tiny method in detecting multiple objects 

also depends on the application of the pre-processing image method. Without the image pre-

processing method, the worst result is when in the water turbidity test scenario of 45.8% with 

an external lighting level of 25%, only 2 objects are detected when there should be 5. When 

using the Histogram Equalization and Auto Level Filtering Methods as image pre-processing, 

the worst result is that it can detect 4 objects from the supposed 5 objects in several scenarios 

(especially when the water turbidity is 45.8%). Meanwhile for the image result for this test is 

presented in Table 7. 

 
Table 7: Visual Results of YOLOv7-tiny in Multiple Objects Testing 

Lighti

ng 

Pre Processing Image Method 

No 

Method 

Histogram 

Equalizati

on 

Auto 

Level 

Filter 

Clear Water 

25% 
   

50% 
   

75% 
   

100% 
   

Lighti

ng 

Pre Processing Image Method 

No 

Method 

Histogram 

Equalizati

on 

Auto 

Level 

Filter 

45,8% Turbidity Water 

25% 
   

50% 
   

75% 
   

100% 
   

 

Based the 8 test scenarios, without using the image pre-processing method, only 1 time 

successfully detected all objects. When using Histogram Equalization, 6 times the system was 

able to detect all objects in their entirety. When the combination of the YOLOv7-tiny and Auto 

Level Filtering methods was applied to 8 test scenarios, 1 time the system was able to detect all 

objects (in the clear water scenario with the help of external lighting level 50%), and the rest 

detected 4 objects (from what should have been 5). 

 

IV. CONCLUSION 

This study utilized YOLOv7-tiny combined with visual feature enhancement methods, 

Histogram Equalization and Auto Level Filtering for underwater tetrapod detection. The model 

was trained on a custom dataset of 2,597 images and achieved a mean average precision (mAP) 

of 0.95. In testing across 12 scenarios, each involving 10-second video sequences under various 

lighting and turbidity levels, the system produced an average object detection confidence of 

0.83, outperforming a previous YOLOv4-tiny implementation (0.76). For multiple-object 

detection, the system achieved an accuracy of 88.75%, reflecting a 2.5% improvement over 

prior work. These results demonstrate the system’s potential for practical deployment in coastal 

construction by reducing diver dependency, improving safety, and enhancing placement 

precision. Nevertheless, the experiments were conducted in a controlled laboratory 

environment using scaled models, which may not fully reflect real underwater conditions. 

Future research should evaluate the system in open-sea scenarios, include non-tetrapod 

distractor objects, and explore advanced detection architectures to further improve robustness 

and generalizability. 
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