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Abstract - Voice command classification is essential for smart lighting systems in IoT environments. 

However, existing approaches often struggle in real-world scenarios with background noise and speaker 

variability due to limited and imbalanced training data. This indicates a need for models that maintain high 

accuracy under such conditions. To address this, the study evaluates three deep learning architectures: a 

Deep Neural Network (DNN), a Gated Recurrent Unit (GRU), and a bidirectional Long Short-Term Memory 

(LSTM) network, run on the Google Speech Commands dataset. The classification targets six voice 

commands (“right”, “off”, “left”, “on”, “down”, “up”) using Mel-Frequency Cepstral Coefficients 

(MFCCs) as features. Data augmentation techniques, including pitch shifting, time stretching, mix-up, and 

noise injection, are used to expand the dataset, balance class distributions, and simulate acoustic conditions 

such as background noise and speaker differences. Model performance is assessed through confusion 

matrices and receiver operating characteristic curves (ROC-AUC) across training, validation, and test sets. 

The bidirectional LSTM achieves the highest test accuracy (94%), followed by GRU (92%) and DNN (79%). 

The LSTM model also generalizes well, showing no signs of overfitting and maintaining stable performance 

in the presence of acoustic variation. These results suggest that combining bidirectional LSTM with MFCC-

based augmentation provides a more robust approach to voice command recognition, particularly in IoT-

based smart lighting contexts, where environmental variability is common. 

 

Keywords - Voice Command Classification, Smart Lighting, Data Augmentation, Bi-LSTM, DNN, GRU, 

MFCC Features, Temporal Dependencies. 
 

 

 

I. INTRODUCTION 

The development of Internet of Things (IoT) devices has revolutionized smart environments by 

enabling seamless human-computer interaction through voice-controlled systems [1],[2]. Voice 

command classification is particularly valuable in smart lighting applications, offering efficient 

control over lighting conditions, energy management, and accessibility. However, the deployment 

of these systems faces notable challenges, including background noise, speaker variability, and 

limited annotated training data, which can significantly impair model robustness and reliability in 

real-world acoustic conditions [3]. Conventional machine learning methods relying on handcrafted 

features and shallow models often lack the flexibility to generalize effectively across diverse 

environments [4]. To address these limitations, recent research has demonstrated the efficacy of 

deep learning architectures, particularly LSTM networks, in capturing temporal and contextual 

dependencies in sequential audio data [5],[6],[7]. LSTMs have shown considerable promise in tasks 

such as voice activity detection, automatic speech recognition (ASR), and speaker identification. 

Nonetheless, IoT-specific applications remain challenged by small datasets and susceptibility to 

overfitting. Data augmentation strategies, including pitch shifting, time stretching, and noise 

injection, have been employed to synthetically enlarge training data and improve model resilience 

[8],[9]. Huh et al. [3] highlighted the benefits of SpecAugment and Gaussian noise for improving 
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phoneme and ASR models, while Alharbi et al. [4] emphasized the critical role of augmentation in 

enhancing deep learning-based ASR systems under noisy conditions. 

Building on these advancements, this study proposes a novel framework for voice command 

recognition tailored to IoT-based smart lighting systems. The proposed approach MFCC features 

with a Bi-LSTM architecture and advanced data augmentation techniques. Previous works, such as 

Alex et al. [8] demonstrated the importance of augmentation strategies in improving model 

robustness for speech separation and accent-aware ASR, respectively. Additionally, practical 

implementations in IoT systems by Biswal et al. [10] have showcased the operational feasibility of 

voice-controlled lighting applications. The key contributions of this study are: (1) the design of a 

Bi-LSTM model optimized for IoT lighting control, (2) a systematic assessment of augmentation 

techniques to enhance classification robustness, and (3) empirical validation demonstrating 

improved performance and resilience to acoustic variability. 

Considering these challenges like particularly background noise, speaker variability, and limited 

annotated training data, there remains a critical question: Can a Bi-LSTM architecture combined 

with advanced MFCC-based data augmentation significantly improve the robustness and accuracy 

of voice command classification in IoT-based smart lighting systems? This research answers this 

question by systematically evaluating whether the proposed method outperforms conventional deep 

learning models (DNN and GRU) under realistic acoustic conditions. Specifically, we hypothesize 

that integrating bidirectional temporal modeling and diverse data augmentation strategies will 

enhance model resilience, resulting in superior classification performance and reduced 

susceptibility to overfitting. 

 

 

II.  SIGNIFICANCE OF THE STUDY 

A. Literature Review 

While prior studies have established the effectiveness of sequential deep learning models such as 

LSTM and GRU, along with augmentation strategies like pitch shifting and SpecAugment, these 

techniques have rarely been adapted specifically to the domain of smart lighting within IoT 

ecosystems [11],[12]. Most previous research has focused on general-purpose automatic speech 

recognition or speech separation, often using large-scale datasets and overlooking critical 

constraints inherent in IoT environments, such as limited processing power, ambient noise, and 

variability among speakers. Although implementations like that of Biswal et al. [10] have 

demonstrated the feasibility of voice-activated lighting systems, they lack systematic evaluations of 

architectural robustness and performance in noisy, real-world conditions. 

This study fills that gap by proposing and validating a tailored voice command classification 

framework for smart lighting using a Bi-LSTM model enhanced with MFCC-based feature 

extraction and advanced data augmentation. Abdul and Al-Talabani [13] reviewed MFCC 

methodologies and applications, highlighting their efficiency and reliability in capturing phonetic 

features, which supports the use of MFCC in this framework. The approach not only improves 

recognition accuracy but also mitigates overfitting, adapts well to user variability, and performs 

reliably in acoustically diverse scenarios. The research further expands the system's functionality to 

include speaker identification, enhancing personalization and security in smart environments. By 

grounding the method in real-world IoT constraints and rigorously benchmarking it against DNN 

and GRU baselines, this work delivers a domain-specific, empirically validated solution. It bridges 

the disconnect between generic voice recognition research and the practical demands of smart 

lighting applications, offering a robust and efficient framework that can serve as a reference for 

future development in intelligent voice-controlled systems. 
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B. Methodology 

The methodology for the voice command recognition study begins with Exploratory Data Analysis 

(EDA) on the balanced Google Speech Commands Dataset, which includes six classes: "right", 

"off", "left", "on", "down", and "up". This balance helps prevent model bias. We perform Feature 

Extraction using MFCC to derive meaningful features from raw audio, followed by Data 

Augmentation to create audio variations for better model adaptability [14]. After preparing the 

dataset by splitting it into training, validation, and test sets, we design neural network architectures 

such as DNN, GRU, and LSTM, optimized with an Adam optimizer and ExponentialDecay learning 

rate. During model training, we use early stopping to avoid overfitting, concluding with model 

validation and testing, where results are visualized via loss curves and confusion matrices. 

To further enhance our study, we adapt our approach to identify voice characteristics, distinguishing 

"User 1", "User 2", and "Unknown User". Due to the class imbalance, especially with "Unknown 

User" samples, we apply advanced data augmentation for minority classes and layer normalization 

within the Bi-LSTM model to improve robustness and handle intra-class variability in speaking 

styles effectively. 

 
Figure 1. Simulation Flowchart 

 

Figure 1 showing the flowchart that shows this narrative flow as a visual roadmap. Starting with an 

EDA oval, which reflects our initial progress into the balanced Google Speech Command Dataset, 

leading to Feature Extraction for processing the audio. This transitions into Data Augmentation, 

boosting our data variety, followed by Dataset Preparation to organize our learning phases. The 
Neural Network Architecture Design is followed by our DNN, GRU, and Bi-LSTM setups, flowing 

into Model Training with Early Stopping for optimized learning. From there, Model Validation and 

Model Testing ovals guide us through performance checks, culminating in Visualization (Loss 

Curves, Confusion Matrix) to show a clear picture of success and errors. The downward arrows 
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connecting each step highlight the logical progression, ensuring every phase builds on the last, 

creating a cohesive and thorough approach to developing our voice command recognition system. 

1. Data Acquisition and Preprocessing 

The study utilized the balanced Google Speech Commands Dataset with six command classes which 

is ”right”, ”off”, ”left”, ”on”, ”down”, and ”up”. MFCCs were extracted as primary audio features, 

involving pre-emphasis filtering, framing with a Hamming window, Fast Fourier Transform (FFT), 

Mel filter bank processing, and Discrete Cosine Transform (DCT). To improve generalization, data 

augmentation techniques like pitch shifting, time stretching, and additive noise injection were 

applied. The dataset was stratified into training (70%), validation (15%), and testing (15%) subsets. 

MFCC matrices were standardized using zero-padding and Z-score normalization, and first-order 

and second-order derivatives of MFCCs were computed to capture dynamic speech properties. 

2. Model Architectures 
Three deep learning architectures were evaluated: DNN, GRU, and Bi-LSTM models. LSTM 

networks were chosen to address the vanishing gradient problem common in Recurrent Neural 

Networks (RNNs). Each LSTM unit employs forget, input, and output gates to control information 
flow. The Bi-LSTM configuration was specifically used to capture both past and future temporal 

contexts by combining forward and backwards passes. 

3. Optimization and Evaluation 

Model parameters were optimized using the Adam optimizer to effectively capture patterns in 

sequential audio data. The SoftMax activation function was used in the output layer for class 

probabilities [15]and training minimized the categorical cross-entropy loss function. Performance 

was evaluated through training and validation accuracy, loss curves, confusion matrices, and 

supplementary metrics such as precision, recall, and F1-score. 

 
 

 

III. RESULTS AND DISCUSSIONS 

A. Results 

The DNN model begins with a Flatten layer that converts the input shape of (None, 63, 60) into a 

3,780-dimensional feature vector for processing MFCC-extracted audio data. It includes a Dense 

layer that reduces the feature space to 256 units with a 25% dropout to mitigate overfitting. 

Additional Dense and dropout layers compress the representation, concluding with a 6-unit softmax 

output layer to classify six commands.  

In contrast, the GRU model aims to exploit temporal dependencies. It starts with a GRU layer 

producing an output shape of (None, 63, 128), followed by dropout and a second GRU layer, which 

condenses to (None, 64). After more dropout and a Dense layer with 32 units, it also ends with a 6-

unit softmax output layer.  

Finally, the Bi-LSTM architecture employs a bidirectional layer, capturing full sequence context, 

followed by regularization, an LSTM layer condensing to (None, 64), and further dropout before a 

final Dense layer and softmax output. Each model is optimized using the Adam optimizer with an 

ExponentialDecay learning rate schedule. 
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Figure 2. DNN, GRU, and Bi-LSTM Model Architecture 

 

Training results were evaluated over 50 epochs, with performance metrics visualized through loss 

and accuracy evolution plots. The training loss decreased from an initial value of 1.6 to 

approximately 0.4, indicating robust learning as the model adjusted its weights to fit the data. The 

validation loss, starting at 1.2, stabilized around 0.6 with minor fluctuations, suggesting 

convergence with some variance likely due to the dataset’s diversity. Accuracy metrics showed the 

training accuracy rising from 0.4 to 0.95, reflecting a strong fit to the training set, while the 

validation accuracy increased from 0.5 to 0.85, plateauing with slight dips. This plateau, managed 

by early stopping, indicates a well-generalized model, though the validation variance suggests 

potential sensitivity to data variations that warrant further investigation. 

 
Figure 3. Training and Validation for DNN Model 
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Figure 4. Testing the Confusion Matrix and ROC-AUC Curve DNN Model 

Testing on a balanced dataset of 1,418 samples showed the model’s effective classification abilities, 

with an overall accuracy of 79%. The confusion matrix indicated strong performance for classes 

like "right", "on", and "down", while "off" and "up" faced challenges, notably misclassifying "off" 

samples as "up". The F1-scores ranged from 0.71 for "up" to 0.84 for "right", and the ROC curves 

reflected high AUC values, confirming discriminative power despite lower performance on certain 

classes. Training results over 50 epochs revealed a decrease in loss and a rise in accuracy, indicating 

robust learning. However, signs of overfitting were present as validation loss increased after a point, 

suggesting the need for continued refinement in feature extraction and model architecture.  

 
Figure 5. Training and Validation for GRU Model 

 
Figure 6. Testing the Confusion Matrix and ROC-AUC Curve GRU Model 

 

Testing on a balanced dataset of 1,418 samples indicated strong model performance, with an overall 

accuracy of 92% and impressive class separation, as shown in the confusion matrix. True positives 

included 223 for "right", 226 for "off", 216 for "on", and 236 for "down", with minor 

misclassifications suggesting some feature overlaps. Precision ranged from 0.86 for "up" to 0.96 

for "off", while recall varied between 0.88 for "off" and 0.96 for "down". ROC curve AUC values 

were excellent, averaging 0.99. Training over 50 epochs showed a decline in training loss from 4.0 
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to 0.5 and an increase in training accuracy from 0.3 to 0.95, while validation loss stabilized around 

0.6 and accuracy reached 0.9, suggesting effective learning and good generalization, despite some 

validation variance that may need further examination. 

 
Figure 7. Training and Validation of the Proposed LSTM-Based Model 

 

Figure 8. Testing the Confusion Matrix and ROC-AUC Curve of the Proposed LSTM-Based Model 

Testing on a balanced dataset of 1,418 samples showed the model's exceptional performance. The 

confusion matrix indicated strong class separation, with "right" achieving 229 true positives out of 

234, "off" 234 out of 256, "on" 220 out of 235, and "down" 237 out of 247. Some misclassifications 

were noted, such as 17 "off" as "up" and 7 "on" as "off", suggesting minor feature overlaps. The 

overall accuracy was 94%, with precision from 0.84 (up) to 0.98 (left) and recall from 0.91 (off) to 

0.98 (right). F1-scores ranged from 0.88 (up) to 0.97 (right), with an average of 0.94 across classes. 

The ROC curves supported these findings, with AUC values close to 1.00 for most classes, 

confirming the model's strong discriminative power while indicating potential improvements for 

the observed misclassifications. 

 
Figure 9. Training and Validation of the Proposed LSTM-Based Model for User Identification 
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Figure 10. Confusion Matrix of the Proposed LSTM-Based Model for User Identification 

 

The voice command system was enhanced to prioritize speaker identification for "User 1", "User 

2", and "Unknown User" using a Bi-LSTM architecture with Layer Normalization. This approach 

significantly improved training stability and convergence, even with imbalanced class distribution, 

achieving a drop in training and validation losses from around 3.4 to below 0.1, while accuracy 

reached 99.87%. The model's computational efficiency also improved, reducing training time for 

50 epochs to about 1 minute and 40 seconds, compared to 28 minutes for the original LSTM model, 

demonstrating its effectiveness for real-time speaker identification in smart lighting systems. 

 
Figure 11. Training and Validation of the DNN Model for User Identification 

 
Figure 12. Confusion Matrix of the DNN Model for User Identification 

 

In the DNN model for speaker identification, training accuracy improved from 70% to nearly 100%, 

with validation accuracy peaking at about 99%. Loss curves showed effective generalization, 

decreasing from 0.75 to below 0.04, indicating minimal overfitting. The confusion matrix 

highlighted strong performance, with precision and recall for "User 1" and "User 2" around 97–

99%, and an overall accuracy of 98.27%. The model trained efficiently, taking approximately 1 

minute and 40 seconds over 50 epochs, making it suitable for real-world applications in smart 

lighting systems with reliable speaker identification. 
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Figure 13. Training and Validation of the GRU Model for User Identification 

 

 
Figure 14. Confusion Matrix of the GRU Model for User Identification 

 

The GRU model for speaker identification showed promising training (98%) and validation (96%) 

accuracy initially, but rising validation loss indicated overfitting, likely due to class imbalance and 

speaker variability. It struggled particularly with the "Unknown Users" class, resulting in low macro 

precision (0.63), recall (0.71), F1-score (0.61), and 60% overall accuracy. Despite training 

efficiency comparable to DNN, GRU underperformed relative to DNN and Bi-LSTM, highlighting 

the need for architectural or regularization improvements. 

B. Discussions 

This study evaluates three models for voice command recognition using the Google Speech 

Commands Dataset, which includes commands like "right", "off", "left", "on", "down", and "up". 

The models DNN, GRU, and Bi-LSTM demonstrate progressive improvements in handling 

sequential data. The DNN, a feedforward model using Dense layers on a 3,780-dimensional input, 

achieved 79% accuracy but showed significant overfitting. GRU improved accuracy to 92% but 

also overfit, reaching 100% training accuracy and 90% validation. The Bi-LSTM achieved the 

highest accuracy at 94%, with better generalization (95% training, 90% validation accuracy), owing 

to its ability to capture bidirectional temporal dependencies. Computational demands varied: the 

DNN had the lowest cost, with complexity approximately O(n·d²), where n is the sample count and 

d the maximum neuron count per layer. These results reflect a trade-off between computational 

efficiency and performance, with Bi-LSTM offering the best generalization and accuracy at a higher 

training cost. 

TABLE 1. RESULTS VOICE COMMAND RECOGNITION SUMMARY 

Model Test 

Accuracy 

Overfitting 

Signs 

Computational 

Complexity 

Average 

Training Time 

DNN 79% Yes O(n·d²) 3.06 sec/epochs 

GRU 92% Yes O(n·s·u²) 28.64 sec/epochs 

Proposed LSTM-Based 94% No O(2n·s·u²) 34.52 sec/epochs 

 



JURNAL INOVTEK POLBENG - SERI INFORMATIKA, VOL. 10, NO. 2, JULI 2025    ISSN : 2527-9866 

 

1237 

 

TABLE 2. RESULTS VOICE CHARACTERISTIC IDENTIFICATION SUMMARY 

Model Test Accuracy Overfitting 

Signs 

 

Computational 

Complexity 

Average 

Training Time 

DNN 98% Yes O(n·d²) ~3 sec/epochs 

GRU 60% Yes O(n·s·u²) ~25 sec/epochs 

Proposed LSTM-Based 99% No O(2n·s·u²) ~30 sec/epochs 

 

The Bi-LSTM model outperformed both DNN and GRU baselines with a test accuracy of 94% and 

showed no signs of overfitting (Table 1). In contrast, the DNN model, while training faster (~2.5 

minutes), achieved only 79% accuracy and exhibited clear overfitting. The GRU model reached 

92% accuracy but began to overfit after epoch 12 and required ~24 minutes of training. Although 

Bi-LSTM took the longest to train (~29 minutes), it maintained stable validation performance, 

indicating superior generalization. A paired t-test confirmed that both GRU and Bi-LSTM 

significantly outperformed DNN (p < 0.001), while no significant difference was found between 

Bi-LSTM and GRU (p = 0.9192), highlighting Bi-LSTM’s practical robustness. For speaker 

identification (Table 2), Bi-LSTM achieved the highest macro F1-score (0.99), followed by DNN 

(0.98) and GRU (0.61). Paired t-tests showed both Bi-LSTM and DNN significantly outperformed 

GRU (p < 0.01), and Bi-LSTM significantly outperformed DNN (p ≈ 0.0), confirming its superior 

generalization across user classes. The command “up” consistently had the lowest classification 

accuracy, likely due to its short duration and phonetic similarity to “off” and “on,” increasing 

spectral overlap. Compared to previous Bi-LSTM-based speech models, Kumar and Aziz [16] 

reported 90% accuracy on a speech command task, while Pandiammal et al. [17] achieved 91.45% 

in emotion classification using MFCC features. These comparisons suggest that the proposed 

model’s performance is within the upper range of prior results, while also offering improvements 

in speaker generalization and robustness. 

 

 
IV. CONCLUSION 

This study demonstrated that a Bi-LSTM model, combined with MFCC-based data augmentation, 

can effectively classify voice commands for smart lighting systems, achieving 94% accuracy and 

outperforming baseline DNN and GRU models. The results support the hypothesis that bidirectional 

temporal modeling enhances generalization in variable acoustic conditions. Theoretically, the 

findings confirm the suitability of recurrent models for sequential audio tasks, while practically, 

they indicate the model's potential for robust voice interfaces in IoT applications. Nevertheless, the 

experiments were conducted on balanced datasets in controlled environments, which may not fully 

reflect real-world complexity. Future research should explore the integration of attention 

mechanisms, test the system in noisy or embedded settings, and investigate multimodal extensions 

combining voice with other input types. Such efforts would address current limitations and advance 

the deployment of reliable, context-aware voice-controlled systems. 
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